auto_scorecard {autoScorecard} | R Documentation |
Functions to Automatically Generate Scorecards
Description
Functions to Automatically Generate Scorecards
Usage
auto_scorecard(
feature = accepts,
key_var = "application_id",
y_var = "bad_ind",
sample_rate = 0.7,
base0 = FALSE,
points0 = 600,
odds0 = 1/20,
pdo = 50,
k = 2,
max_depth = 3,
tree_p = 0.1,
missing_rate = 0,
single_var_rate = 1,
iv_set = 0.02,
char_to_number = TRUE,
na.omit = TRUE
)
Arguments
feature |
A data.frame with independent variables and target variable. |
key_var |
A name of index variable name. |
y_var |
A name of target variable. |
sample_rate |
Training set sampling percentage. |
base0 |
Whether the scorecard base score is 0. |
points0 |
Base point. |
odds0 |
odds. |
pdo |
Point-to Double Odds. |
k |
Each scale doubles the probability of default several times. |
max_depth |
Set the maximum depth of any node of the final tree, with the root node counted as depth 0. Values greater than 30 rpart will give nonsense results on 32-bit machines. |
tree_p |
Meet the following conversion formula: minbucket = round( p*nrow( df )).Smallest bucket(rpart):Minimum number of observations in any terminal <leaf> node. |
missing_rate |
Data missing rate, variables smaller than this setting will be deleted. |
single_var_rate |
The maximum proportion of a single variable, the variable greater than the setting will be deleted. |
iv_set |
IV value minimum threshold, variable IV value less than the setting will be deleted. |
char_to_number |
Whether to convert character variables to numeric. |
na.omit |
na.omit returns the object with incomplete cases removed. |
Value
A list containing data, bins, scorecards and models.
Examples
accepts <- read.csv(system.file("extdata", "accepts.csv", package = "autoScorecard" ))
auto_scorecard1 <- auto_scorecard( feature = accepts[1:2000,], key_var= "application_id",
y_var = "bad_ind",sample_rate = 0.7, points0 = 600, odds0=1/20, pdo = 50, max_depth = 3,
tree_p = 0.1, missing_rate = 0, single_var_rate = 1, iv_set = 0.02,
char_to_number = TRUE , na.omit = TRUE)