pcm_dif {autoRasch}R Documentation

Estimation of The Partial Credit Model with DIF

Description

This function computes the parameter estimates of a partial credit model with DIF for dichotomous and polytomous responses by implementing the coordinate descent.

fitStats compute the fit statistics (i.e., Outfit and Infit) of the PCM-DIF model estimation (items and persons).

Usage

pcm_dif(
  X,
  init_par = c(),
  groups_map = c(),
  setting = c(),
  method = c("fast", "novel")
)

## S3 method for class 'pcmdif'
fitStats(obj, isAlpha = TRUE)

## S3 method for class 'pcmdif'
summary(object, ...)

## S3 method for class 'pcmdif'
print(x, ...)

Arguments

X

A matrix or data frame as an input with ordinal responses (starting from 0); rows represent individuals, columns represent items.

init_par

a vector of initial values of the estimated parameters.

groups_map

Binary matrix. Respondents membership to DIF groups; rows represent individuals, column represent group partitions.

setting

a list of the optimization control setting parameters.See autoRaschOptions()

method

The implementation option of log likelihood function. fast using a c++ implementation and novel using an R implementation.

obj

The object of class 'pcmdif'.

isAlpha

Boolean value that indicates whether the discrimination parameters is needed to be estimated or not. The discrimination parameters are estimated using the corresponding models (GPCM or GPCM-DIF).

object

The object of class 'pcmdif'.

...

Further arguments to be passed.

x

The object of class 'pcmdif'.

Value

pcm_dif() will return a list which contains:

X

The dataset that is used for estimation.

mt_vek

A vector of the highest response given to items.

itemName

The vector of names of items (columns) in the dataset.

loglik

The log likelihood of the estimation.

hessian

The hessian matrix. Only when the isHessian = TRUE.

beta

A vector of the difficulty parameter of each categories of items (thresholds).

theta

A vector of the ability parameters of each individuals.

fitStats() will return a list which contains:

alpha

A vector of estimated discrimination parameters for each items.

i.fit Item fit statistics.

p.fit Person fit statistics.

traceMat Some computed matrices in the process.

See Also

pcm, pcm_dif, gpcm, gpcm_dif

Examples

## Not run: 
pcmdif_res <- pcm_dif(shortDIF, groups_map = c(rep(1,50),rep(0,50)))
fit_res <- fitStats(pcmdif_res)
itemfit(fit_res)
personfit(fit_res)
plot_fitStats(fit_res, toPlot = c("alpha","outfit"), useName = FALSE)

## End(Not run)


[Package autoRasch version 0.2.2 Index]