gpcm_dif {autoRasch} | R Documentation |
Estimation of The Generalized Partial Credit Model with DIF
Description
This function computes the parameter estimates of a generalized partial credit model with DIF for polytomous responses by using penalized JML estimation.
Usage
gpcm_dif(
X,
init_par = c(),
groups_map = c(),
setting = c(),
method = c("fast", "novel")
)
## S3 method for class 'gpcmdif'
summary(object, ...)
## S3 method for class 'gpcmdif'
print(x, ...)
Arguments
X |
A matrix or data frame as an input with ordinal responses (starting from 0); rows represent individuals, columns represent items. |
init_par |
a vector of initial values of the estimated parameters. |
groups_map |
Binary matrix. Respondents membership to DIF groups; rows represent individuals, column represent group partitions. |
setting |
a list of the optimization control setting parameters.See |
method |
The implementation option of log likelihood function. |
object |
The object of class |
... |
Further arguments to be passed. |
x |
The object of class |
Details
In the discrimination parameters estimation, instead of estimating the discrimination parameters,
we are estimating the natural logarithm of the parameters to avoid negative values, \alpha = exp(\gamma)
.
Value
X |
The dataset that is used for estimation. |
mt_vek |
A vector of the highest responses given to items. |
itemName |
The vector of names of items (columns) in the dataset. |
loglik |
The log likelihood of the estimation. |
hessian |
The hessian matrix. Only when the |
delta |
A vector of the DIF parameters of each items on each groups. |
gamma |
A vector of the natural logarithm of discrimination parameters of each items. |
beta |
A vector of the difficulty parameter of each items' categories (thresholds). |
theta |
A vector of the ability parameters of each individuals. |
See Also
Examples
## Not run:
gpcmdif_res <- gpcm_dif(shortDIF, groups_map = c(rep(1,50),rep(0,50)))
summary(gpcmdif_res, par="delta")
## End(Not run)