gpcm {autoRasch} | R Documentation |
Estimation of The Generalized Partial Credit Model
Description
This function computes the parameter estimates of a generalized partial credit model for polytomous responses by using penalized JML estimation. Inputting a dichotomous responses to this model, will automatically transforms the GPCM to the 2-PL model.
Usage
gpcm(X, init_par = c(), setting = c(), method = c("fast", "novel"))
## S3 method for class 'gpcm'
summary(object, ...)
## S3 method for class 'gpcm'
print(x, ...)
Arguments
X |
Input dataset as matrix or data frame with ordinal responses (starting from 0); rows represent individuals, columns represent items. |
init_par |
a vector of initial values of the estimated parameters. |
setting |
a list of the optimization control setting parameters. See |
method |
The implementation option of log likelihood function. |
object |
The object of class |
... |
Further arguments to be passed. |
x |
The object of class |
Details
In the discrimination parameters estimation, instead of estimating the discrimination parameters (\alpha
),
we are estimating its natural logarithm to avoid negative values, \alpha = exp(\gamma)
.
Value
X |
The dataset that is used for estimation. |
mt_vek |
A vector of the highest response given to items. |
itemName |
The vector of names of items (columns) in the dataset. |
loglik |
The log likelihood of the estimation. |
hessian |
The hessian matrix. Only when the |
gamma |
A vector of the natural logarithm of discrimination parameters of each items. |
beta |
A vector of the difficulty parameter of each items' categories (thresholds). |
theta |
A vector of the ability parameters of each individuals. |
References
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16(2). https://doi.org/10.1177/014662169201600206
See Also
Examples
gpcm_res <- gpcm(short_poly_data)
summary(gpcm_res, par = "alpha")