gva.augmentedRCBD {augmentedRCBD} | R Documentation |
Perform Genetic Variability Analysis on augmentedRCBD
Output
Description
gva.augmentedRCBD
performs genetic variability analysis on an object of
class augmentedRCBD
.
Usage
gva.augmentedRCBD(aug, k = 2.063)
Arguments
aug |
An object of class |
k |
The standardized selection differential or selection intensity. Default is 2.063 for 5% selection proportion (see Details). |
Details
gva.augmentedRCBD
performs genetic variability analysis from the ANOVA
results in an object of class augmentedRCBD
and computes several
variability estimates.
The phenotypic, genotypic and environmental variance (\(\sigma^{2}_{p}\), \(\sigma^{2}_{g}\) and \(\sigma^{2}_{e}\) ) are obtained from the ANOVA tables according to the expected value of mean square described by Federer and Searle (1976) as follows:
\[\sigma^{2}_{g} = \sigma^{2}_{p} - \sigma^{2}_{e}\]Phenotypic and genotypic coefficients of variation (\(PCV\) and \(GCV\)) are estimated according to Burton (1951, 1952) as follows:
\[GCV = \frac{\sigma^{2}_{g}}{\sqrt{\overline{x}}} \times 100\]Where \(\overline{x}\) is the mean.
The estimates of \(PCV\) and \(GCV\) are categorised according to Sivasubramanian and Madhavamenon (1978) as follows:
CV (%) | Category |
x \( < \) 10 | Low |
10 \(\le\) x \( < \) 20 | Medium |
\(\ge\) 20 | High |
The broad-sense heritability (\(H^{2}\)) is calculated according to method of Lush (1940) as follows:
\[H^{2} = \frac{\sigma^{2}_{g}}{\sigma^{2}_{p}}\]The estimates of broad-sense heritability (\(H^{2}\)) are categorised according to Robinson (1966) as follows:
\(H^{2}\) | Category |
x \( < \) 30 | Low |
30 \(\le\) x \( < \) 60 | Medium |
\(\ge\) 60 | High |
Genetic advance (\(GA\)) is estimated and categorised according to Johnson et al., (1955) as follows:
\[GA = k \times \sigma_{g} \times \frac{H^{2}}{100}\]Where the constant \(k\) is the standardized selection differential or selection intensity. The value of \(k\) at 5% proportion selected is 2.063. Values of \(k\) at other selected proportions are available in Appendix Table A of Falconer and Mackay (1996).
Selection intensity (\(k\)) can also be computed in R as below:
If p
is the proportion of selected individuals, then deviation of
truncation point from mean (x
) and selection intensity (k
) are
as follows:
x = qnorm(1-p)
k = dnorm(qnorm(1 - p))/p
Using the same the Appendix Table A of Falconer and Mackay (1996) can be recreated as follows.
TableA <- data.frame(p = c(seq(0.01, 0.10, 0.01), NA, seq(0.10, 0.50, 0.02), NA, seq(1, 5, 0.2), NA, seq(5, 10, 0.5), NA, seq(10, 50, 1))) TableA$x <- qnorm(1-(TableA$p/100)) TableA$i <- dnorm(qnorm(1 - (TableA$p/100)))/(TableA$p/100)
Appendix Table A (Falconer and Mackay, 1996)
p% | x | i |
0.01 | 3.71901649 | 3.9584797 |
0.02 | 3.54008380 | 3.7892117 |
0.03 | 3.43161440 | 3.6869547 |
0.04 | 3.35279478 | 3.6128288 |
0.05 | 3.29052673 | 3.5543807 |
0.06 | 3.23888012 | 3.5059803 |
0.07 | 3.19465105 | 3.4645890 |
0.08 | 3.15590676 | 3.4283756 |
0.09 | 3.12138915 | 3.3961490 |
0.10 | 3.09023231 | 3.3670901 |
<> | <> | <> |
0.10 | 3.09023231 | 3.3670901 |
0.12 | 3.03567237 | 3.3162739 |
0.14 | 2.98888227 | 3.2727673 |
0.16 | 2.94784255 | 3.2346647 |
0.18 | 2.91123773 | 3.2007256 |
0.20 | 2.87816174 | 3.1700966 |
0.22 | 2.84796329 | 3.1421647 |
0.24 | 2.82015806 | 3.1164741 |
0.26 | 2.79437587 | 3.0926770 |
0.28 | 2.77032723 | 3.0705013 |
0.30 | 2.74778139 | 3.0497304 |
0.32 | 2.72655132 | 3.0301887 |
0.34 | 2.70648331 | 3.0117321 |
0.36 | 2.68744945 | 2.9942406 |
0.38 | 2.66934209 | 2.9776133 |
0.40 | 2.65206981 | 2.9617646 |
0.42 | 2.63555424 | 2.9466212 |
0.44 | 2.61972771 | 2.9321196 |
0.46 | 2.60453136 | 2.9182048 |
0.48 | 2.58991368 | 2.9048286 |
0.50 | 2.57582930 | 2.8919486 |
<> | <> | <> |
1.00 | 2.32634787 | 2.6652142 |
1.20 | 2.25712924 | 2.6028159 |
1.40 | 2.19728638 | 2.5490627 |
1.60 | 2.14441062 | 2.5017227 |
1.80 | 2.09692743 | 2.4593391 |
2.00 | 2.05374891 | 2.4209068 |
2.20 | 2.01409081 | 2.3857019 |
2.40 | 1.97736843 | 2.3531856 |
2.60 | 1.94313375 | 2.3229451 |
2.80 | 1.91103565 | 2.2946575 |
3.00 | 1.88079361 | 2.2680650 |
3.20 | 1.85217986 | 2.2429584 |
3.40 | 1.82500682 | 2.2191656 |
3.60 | 1.79911811 | 2.1965431 |
3.80 | 1.77438191 | 2.1749703 |
4.00 | 1.75068607 | 2.1543444 |
4.20 | 1.72793432 | 2.1345772 |
4.40 | 1.70604340 | 2.1155928 |
4.60 | 1.68494077 | 2.0973249 |
4.80 | 1.66456286 | 2.0797152 |
5.00 | 1.64485363 | 2.0627128 |
<> | <> | <> |
5.00 | 1.64485363 | 2.0627128 |
5.50 | 1.59819314 | 2.0225779 |
6.00 | 1.55477359 | 1.9853828 |
6.50 | 1.51410189 | 1.9506784 |
7.00 | 1.47579103 | 1.9181131 |
7.50 | 1.43953147 | 1.8874056 |
8.00 | 1.40507156 | 1.8583278 |
8.50 | 1.37220381 | 1.8306916 |
9.00 | 1.34075503 | 1.8043403 |
9.50 | 1.31057911 | 1.7791417 |
10.00 | 1.28155157 | 1.7549833 |
<> | <> | <> |
10.00 | 1.28155157 | 1.7549833 |
11.00 | 1.22652812 | 1.7094142 |
12.00 | 1.17498679 | 1.6670040 |
13.00 | 1.12639113 | 1.6272701 |
14.00 | 1.08031934 | 1.5898336 |
15.00 | 1.03643339 | 1.5543918 |
16.00 | 0.99445788 | 1.5206984 |
17.00 | 0.95416525 | 1.4885502 |
18.00 | 0.91536509 | 1.4577779 |
19.00 | 0.87789630 | 1.4282383 |
20.00 | 0.84162123 | 1.3998096 |
21.00 | 0.80642125 | 1.3723871 |
22.00 | 0.77219321 | 1.3458799 |
23.00 | 0.73884685 | 1.3202091 |
24.00 | 0.70630256 | 1.2953050 |
25.00 | 0.67448975 | 1.2711063 |
26.00 | 0.64334541 | 1.2475585 |
27.00 | 0.61281299 | 1.2246130 |
28.00 | 0.58284151 | 1.2022262 |
29.00 | 0.55338472 | 1.1803588 |
30.00 | 0.52440051 | 1.1589754 |
31.00 | 0.49585035 | 1.1380436 |
32.00 | 0.46769880 | 1.1175342 |
33.00 | 0.43991317 | 1.0974204 |
34.00 | 0.41246313 | 1.0776774 |
35.00 | 0.38532047 | 1.0582829 |
36.00 | 0.35845879 | 1.0392158 |
37.00 | 0.33185335 | 1.0204568 |
38.00 | 0.30548079 | 1.0019882 |
39.00 | 0.27931903 | 0.9837932 |
40.00 | 0.25334710 | 0.9658563 |
41.00 | 0.22754498 | 0.9481631 |
42.00 | 0.20189348 | 0.9306998 |
43.00 | 0.17637416 | 0.9134539 |
44.00 | 0.15096922 | 0.8964132 |
45.00 | 0.12566135 | 0.8795664 |
46.00 | 0.10043372 | 0.8629028 |
47.00 | 0.07526986 | 0.8464123 |
48.00 | 0.05015358 | 0.8300851 |
49.00 | 0.02506891 | 0.8139121 |
50.00 | 0.00000000 | 0.7978846 |
Where p% is the selected percentage of individuals from a population, x is the deviation of the point of truncation of selected individuals from population mean and i is the selection intensity.
Genetic advance as per cent of mean (\(GAM\)) are estimated and categorised according to Johnson et al., (1955) as follows:
\[GAM = \frac{GA}{\overline{x}} \times 100\]GAM | Category |
x \( < \) 10 | Low |
10 \(\le\) x \( < \) 20 | Medium |
\(\ge\) 20 | High |
Value
A list with the following descriptive statistics:
Mean |
The mean value. |
PV |
Phenotyic variance. |
GV |
Genotyipc variance. |
EV |
Environmental variance. |
GCV |
Genotypic coefficient of variation |
GCV category |
The \(GCV\) category according to Sivasubramaniam and Madhavamenon (1973). |
PCV |
Phenotypic coefficient of variation |
PCV category |
The \(PCV\) category according to Sivasubramaniam and Madhavamenon (1973). |
ECV |
Environmental coefficient of variation |
hBS |
The broad-sense heritability (\(H^{2}\)) (Lush 1940). |
hBS category |
The \(H^{2}\) category according to Robinson (1966). |
GA |
Genetic advance (Johnson et al. 1955). |
GAM |
Genetic advance as per cent of mean (Johnson et al. 1955). |
GAM category |
The \(GAM\) category according to Johnson et al. (1955). |
Note
Genetic variability analysis needs to be performed only if the sum of squares of "Treatment: Test" are significant.
Negative estimates of variance components if computed are not abnormal. For information on how to deal with these, refer Robinson (1955) and Dudley and Moll (1969).
References
Lush JL (1940). “Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics.” Proceedings of the American Society of Animal Nutrition, 1940(1), 293–301.
Burton GW (1951). “Quantitative inheritance in pearl millet (Pennisetum glaucum).” Agronomy Journal, 43(9), 409–417.
Burton GW (1952). “Qualitative inheritance in grasses. Vol. 1.” In Proceedings of the 6th International Grassland Congress, Pennsylvania State College, 17–23.
Johnson HW, Robinson HF, Comstock RE (1955). “Estimates of genetic and environmental variability in soybeans.” Agronomy journal, 47(7), 314–318.
Robinson HF, Comstock RE, Harvey PH (1955). “Genetic variances in open pollinated varieties of corn.” Genetics, 40(1), 45–60.
Robinson HF (1966). “Quantitative genetics in relation to breeding on centennial of Mendelism.” Indian Journal of Genetics and Plant Breeding, 171.
Dudley JW, Moll RH (1969). “Interpretation and use of estimates of heritability and genetic variances in plant breeding.” Crop Science, 9(3), 257–262.
Sivasubramaniam S, Madhavamenon P (1973). “Genotypic and phenotypic variability in rice.” The Madras Agricultural Journal, 60(9-13), 1093–1096.
Federer WT, Searle SR (1976). “Model Considerations and Variance Component Estimation in Augmented Completely Randomized and Randomized Complete Blocks Designs-Preliminary Version.” Technical Report BU-592-M, Cornell University, New York.
Falconer DS, Mackay TFC (1996). Introduction to Quantitative Genetics. Pearson/Prenctice Hall, New York, NY.
See Also
Examples
# Example data
blk <- c(rep(1,7),rep(2,6),rep(3,7))
trt <- c(1, 2, 3, 4, 7, 11, 12, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 8, 6, 10)
y1 <- c(92, 79, 87, 81, 96, 89, 82, 79, 81, 81, 91, 79, 78, 83, 77, 78, 78,
70, 75, 74)
y2 <- c(258, 224, 238, 278, 347, 300, 289, 260, 220, 237, 227, 281, 311, 250,
240, 268, 287, 226, 395, 450)
data <- data.frame(blk, trt, y1, y2)
# Convert block and treatment to factors
data$blk <- as.factor(data$blk)
data$trt <- as.factor(data$trt)
# Results for variable y1
out1 <- augmentedRCBD(data$blk, data$trt, data$y1, method.comp = "lsd",
alpha = 0.05, group = TRUE, console = TRUE)
# Results for variable y2
out2 <- augmentedRCBD(data$blk, data$trt, data$y2, method.comp = "lsd",
alpha = 0.05, group = TRUE, console = TRUE)
# Genetic variability analysis
gva.augmentedRCBD(out1)
gva.augmentedRCBD(out2)