describe.augmentedRCBD {augmentedRCBD} | R Documentation |
Compute Descriptive Statistics from augmentedRCBD
Output
Description
describe.augmentedRCBD
computes descriptive statistics from the
adjusted means in an object of class augmentedRCBD
.
Usage
describe.augmentedRCBD(aug)
Arguments
aug |
An object of class |
Details
describe.augmentedRCBD
computes the following descriptive statistics
from the adjusted means in an object of class augmentedRCBD
.
Count
Mean
Standard deviation
Standard error
Minimum
Maximum
Skewness statistic along with p-value from D'Agostino test of skewness (D'Agostino, 1970).
Kurtosis statistic along with p-value from Anscombe-Glynn test of kurtosis (Anscombe and Glynn, 1983).
Value
A list with the following descriptive statistics:
Count |
The number of treatments/genotypes. |
Mean |
The mean value. |
Std.Error |
The standard error. |
Std.Deviation |
The standard deviation. |
Min |
The minimum value |
Max |
The maximum value |
Skewness(statistic) |
The skewness estimator. |
Skewness(p.value) |
The p-value from D'Agostino test of skewness. |
Kurtosis(statistic) |
The kurtosis estimator. |
Kurtosis(p.value) |
The p-value from Anscombe-Glynn test of kurtosis. |
References
D'Agostino RB (1970). “Transformation to normality of the null distribution of g1.” Biometrika, 57(3), 679–681.
Anscombe FJ, Glynn WJ (1983). “Distribution of the kurtosis statistic b2 for normal samples.” Biometrika, 70(1), 227–234.
See Also
Examples
# Example data
blk <- c(rep(1,7),rep(2,6),rep(3,7))
trt <- c(1, 2, 3, 4, 7, 11, 12, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 8, 6, 10)
y1 <- c(92, 79, 87, 81, 96, 89, 82, 79, 81, 81, 91, 79, 78, 83, 77, 78, 78,
70, 75, 74)
y2 <- c(258, 224, 238, 278, 347, 300, 289, 260, 220, 237, 227, 281, 311, 250,
240, 268, 287, 226, 395, 450)
data <- data.frame(blk, trt, y1, y2)
# Convert block and treatment to factors
data$blk <- as.factor(data$blk)
data$trt <- as.factor(data$trt)
# Results for variable y1
out1 <- augmentedRCBD(data$blk, data$trt, data$y1, method.comp = "lsd",
alpha = 0.05, group = TRUE, console = TRUE)
# Results for variable y2
out2 <- augmentedRCBD(data$blk, data$trt, data$y2, method.comp = "lsd",
alpha = 0.05, group = TRUE, console = TRUE)
# Descriptive statistics
describe.augmentedRCBD(out1)
describe.augmentedRCBD(out2)