auc.para.frequentist {auRoc} | R Documentation |
AUC by Frequentist Parametric Methods
Description
Obtain the point estimate and the confidence interval of the AUC using some frequentist parametric methods.
Usage
auc.para.frequentist(x, y, conf.level=0.95,
dist=c("normalDV", "normalEV", "exponential"),
method=c("lrstar", "lr", "wald", "RG1", "RG2"))
Arguments
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
dist |
the name of a parametric distribution. |
method |
a method used to construct the CI. |
Details
Use a variety of frequentist methods for different parametric models to estimate the AUC.
Value
Point estimate and lower and upper bounds of the CI of the AUC.
Note
The observations from class P tend to have larger values then that from class N.
Author(s)
Dai Feng
References
Giuliana Cortese and Laura Ventura (2013) Accurate higher-order likelihood inference on P(Y < X). Computational Statistics 28(3) 1035-1059
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2015) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research DOI: 10.1177/0962280215602040
Benjamin Reiser and Irwin Guttman (1986) Statistical inference for Pr(Y < X): The normal case. Technometrics 28(3) 253-257
Examples
#Example 1
data(petBrainGlioma)
y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE)
x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE)
auc.para.frequentist(x, y, dist="exp")
#Example 2
data(petBrainGlioma)
y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE)
x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE)
auc.para.frequentist(x, y, method="RG1")