auc.para.bayes {auRoc} | R Documentation |
AUC by the Bayesian MCMC
Description
Obtain the point estimate and the credible interval of the AUC using the Bayesian MCMC.
Usage
auc.para.bayes(x, y, conf.level=0.95,
dist=c("normalDV", "normalEV", "exponential"),
nburn=1000, niter=10000, nthin=1, seed=100)
Arguments
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
dist |
the name of a parametric distribution. |
nburn |
number of burn-in. The default is 1000. |
niter |
number of iterations. The default is 10000. |
nthin |
number of thinnng interval. The default is 1. |
seed |
the seed. The default is 100. |
Details
Use the Bayesian MCMC to estimate the parameters of the distributions and hence the AUC values.
Value
Point estimate and lower and upper bounds of the CI of the AUC.
Note
The observations from class P tend to have larger values then that from class N.
Author(s)
Dai Feng
References
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2015) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research DOI: 10.1177/0962280215602040
Examples
#Example 1
data(petBrainGlioma)
y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE)
x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE)
auc.para.bayes(x, y, dist="exp")
#Example 2
data(petBrainGlioma)
y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE)
x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE)
auc.para.bayes(x, y, dist="normalDV")