Rhostar.p.exact {asymmetry.measures} | R Documentation |
Calculates the exact value of \rho_p^*
, used in the implementation of the strong asymmetry measure \eta(X)
.
Description
Returns \rho_p^*
, used in the calculation of the strong asymetry measure \eta(X)
.
Usage
Rhostar.p.exact(xin, p.param, dist, p1, p2)
Arguments
xin |
A vector of data points - the available sample. |
p.param |
A parameter with the value greater than or equal to 1/2 and less than 1. |
dist |
Character string, specifies selected distribution function. |
p1 |
A scalar. Parameter 1 (vector or object) of the selected distribution. |
p2 |
A scalar. Parameter 2 (vector or object) of the selected distribution. |
Details
Implements the quantity
\frac{ 2\sqrt{3}}{p} \frac{-\int_{\xi_{1-p}}^{\infty}{f^2(x)(1-F(x))\,dx}+\frac{p}{2}\int_{\xi_{1-p}}^{\infty} f^2(x)\,dx}{ \left \{ p\int_{\xi_{1-p}}^{\infty}f^3(x)\,dx-(\int_{\xi_{1-p}}^{\infty}f^2(x)\,dx)^2 \right \}^{1/2} }
defined on page 6 Patil, Bagkavos and Wood (2014), see also (5) in Bagkavos, Patil and Wood (2016). This implementation uses exact calculation of the functionals in the definition of \rho_p^*
.
Value
Returns a scalar, the exact value of \rho_p^*
.
Author(s)
Dimitrios Bagkavos and Lucia Gamez Gallardo
R implementation and documentation: Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com> , Lucia Gamez Gallardo <gamezgallardolucia@gmail.com>
References
See Also
Examples
set.seed(1234)
selected.r <- "weib" #select Weibull as the distribution
shape <- 1 # specify shape parameter
scale <- 1 # specify scale parameter
n <- 100 # specify sample size
param <- 0.9 # specify parameter
xout<-r.sample(n,selected.r,shape,scale) # specify sample
Rhostar.p.exact(xout,param,selected.r,shape,scale) # calculate Rhostar.p.exact
#-0.05206678 # returns the result
selected.r2 <- "norm" #select Normal as the distribution
n <- 100 # specify sample size
mean <- 0 # specify the mean
sd <- 1 # specify the variance
param <- 0.9 # specify parameter
xout <-r.sample(n,selected.r2,mean,sd) # specify sample
Rhostar.p.exact(xout,param,selected.r2,mean,sd) # calculate Rhostar.p.exact
#-0.008687447 # returns the result
selected.r3 <- "cauchy" #select Cauchy as the distribution
n <- 100 # specify sample size
location <- 0 # specify the location parameter
scale <- 1 # specify the scale parameter
param <- 0.9 # specify parameter
xout<-r.sample(n,selected.r3,location,scale) # specify sample
Rhostar.p.exact(xout,param,selected.r3,location,scale) # calculate Rhostar.p.exact
#0.0280602 # returns the result