Rho.p {asymmetry.measures} | R Documentation |
Calculates \rho_p
, used in the implementation of the strong asymmetry measure \eta(X)
.
Description
Estimates \rho_p
, used in the calculation of the strong asymetry measure \eta(X)
.
Usage
Rho.p(xin, p.param, dist, p1=0, p2=1)
Arguments
xin |
A vector of data points - the available sample. |
p.param |
A parameter with the value greater than or equal to 1/2 and less than 1. |
dist |
Character string, specifies selected distribution function. |
p1 |
A scalar. Parameter 1 (vector or object) of the selected distribution. |
p2 |
A scalar. Parameter 2 (vector or object) of the selected distribution. |
Details
Implements the quantity:
\frac{ 2\sqrt{3}}{p} \frac{-\int_{-\infty}^{\xi_p} f^2(x)F(x)\,dx - \frac{p}{2}\int_{-\infty}^{\xi_p} f^2(x)\,dx}{ \left \{ p\int_{-\infty}^{\xi_p} f^3(x)\,dx-(\int_{-\infty}^{\xi_p} f^2(x)\,dx)^2 \right \}^{1/2} }
defined on page 6 Patil, Bagkavos and Wood, see also (4) in Bagkavos, Patil and Wood . Estimation of the p.d.f. and c.d.f. functions is currently performed by maximum likelihood as e.g. kernel estimates inherit large amount of variance to \rho_p
.
Value
Returns a scalar, the value of \rho_p
.
Author(s)
Dimitrios Bagkavos and Lucia Gamez Gallardo
R implementation and documentation: Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com> , Lucia Gamez Gallardo <gamezgallardolucia@gmail.com>
References
See Also
Rho.p.exact,Rhostar.p, Rhostar.p.exact
Examples
set.seed(1234)
selected.r <- "weib" #select Weibull as the distribution
shape <- 1 # specify shape parameter
scale <- 1 # specify scale parameter
n <- 100 # specify sample size
param <- 0.9 # specify parameter
xout<-r.sample(n,selected.r,shape,scale) # specify sample
Rho.p(xout,param,selected.r,shape,scale) # calculate Rho.p
#-0.06665222 # returns the result
selected.r2 <- "norm" #select Normal as the distribution
n <- 100 # specify sample size
mean <- 0 # specify the mean
sd <- 1 # specify the variance
param <- 0.9 # specify parameter
xout <-r.sample(n,selected.r2,mean,sd) # specify sample
Rho.p(xout,param,selected.r2,mean,sd) # calculate Rho.p
#-0.1005591 # returns the result
selected.r3 <- "cauchy" #select Cauchy as the distribution
n <- 100 # specify sample size
location <- 0 # specify the location parameter
scale <- 1 # specify the scale parameter
param <- 0.9 # specify parameter
xout<-r.sample(n,selected.r3,location,scale) # specify sample
Rho.p(xout,param,selected.r3,location,scale) # calculate Rho.p
#-0.0580943 # returns the result