| families {aster2} | R Documentation |
Families for Aster Models
Description
Families known to the package. These functions construct simple family specifications used in specifying aster models. Statistical properties of these families are described.
Usage
fam.bernoulli()
fam.poisson()
fam.zero.truncated.poisson()
fam.normal.location.scale()
fam.multinomial(dimension)
Arguments
dimension |
the dimension (number of categories) for the multinomial distribution. |
Details
Currently implemented families are
"bernoulli"Bernoulli (binomial with sample size one). The distribution of any zero-or-one-valued random variable
Y, which is the canonical statistic. The mean value parameter is\mu = E(Y) = \Pr(Y = 1).The canonical parameter is
\theta = \log(\mu) - \log(1 - \mu), also called logit of\mu. The cumulant function isc(\theta) = \log(1 + e^\theta).This distribution has degenerate limiting distributions. The lower limit as
\theta \to - \inftyis the distribution concentrated at zero, having cumulant function which is the constant function everywhere equal to zero. The upper limit as\theta \to + \inftyis the distribution concentrated at one, having cumulant function which is the identity function satisfyingc(\theta) = \thetafor all\theta.For predecessor (sample size)
n, the successor is the sum ofnindependent and identically distributed (IID) Bernoulli random variables, that is, binomial with sample sizen. The mean value parameter isntimes the mean value parameter for sample size one; the cumulant function isntimes the cumulant function for sample size one; the canonical parameter is the same for all sample sizes."poisson"Poisson. The mean value parameter
\muis the mean of the Poisson distribution. The canonical parameter is\theta = \log(\mu). The cumulant function isc(\theta) = e^\theta.This distribution has a degenerate limiting distribution. The lower limit as
\theta \to - \inftyis the distribution concentrated at zero, having cumulant function which is the constant function everywhere equal to zero. There is no upper limit because the canonical statistic is unbounded above.For predecessor (sample size)
n, the successor is the sum ofnIID Poisson random variables, that is, Poisson with meann \mu. The mean value parameter isntimes the mean value parameter for sample size one; the cumulant function isntimes the cumulant function for sample size one; the canonical parameter is the same for all sample sizes."zero.truncated.poisson"Poisson conditioned on being greater than zero. Let
mbe the mean of the corresponding untruncated Poisson distribution. Then the canonical parameters for both truncated and untruncated distributions are the same\theta = \log(m). The mean value parameter for the zero-truncated Poisson distribution is\mu = \frac{m}{1 - e^{- m}}and the cumulant function is
c(\theta) = m + \log(1 - e^{- m}),where
mis as defined above, som = e^\theta.This distribution has a degenerate limiting distribution. The lower limit as
\theta \to - \inftyis the distribution concentrated at one, having cumulant function which is the identity function satisfyingc(\theta) = \thetafor all\theta. There is no upper limit because the canonical statistic is unbounded above.For predecessor (sample size)
n, the successor is the sum ofnIID zero-truncated Poisson random variables, which is not a brand-name distribution. The mean value parameter isntimes the mean value parameter for sample size one; the cumulant function isntimes the cumulant function for sample size one; the canonical parameter is the same for all sample sizes."normal.location.scale"The distribution of a normal random variable
Xwith unknown meanmand unknown variancev. Thought of as an exponential family, this is a two-parameter family, hence must have a two-dimensional canonical statisticY = (X, X^2). The canonical parameter vector\thetahas components\theta_1 = \frac{m}{v}and
\theta_2 = - \frac{1}{2 v}.The value of
\theta_1is unrestricted, but\theta_2must be strictly negative. The mean value parameter vector\muhas components\mu_1 = m = - \frac{\theta_1}{2 \theta_2}and
\mu_2 = v + m^2 = - \frac{1}{2 \theta_2} + \frac{\theta_1^2}{4 \theta_2^2}.The cumulant function is
c(\theta) = - \frac{\theta_1^2}{4 \theta_2} + \frac{1}{2} \log\left(- \frac{1}{2 \theta_2}\right).This distribution has no degenerate limiting distributions, because the canonical statistic is a continuous random vector so the boundary of its support has probability zero.
For predecessor (sample size)
n, the successor is the sum ofnIID random vectors(X_i, X_i^2), where eachX_iis normal with meanmand variancev, and this is not a brand-name multivariate distribution (the first component of the sum is normal, the second component noncentral chi-square, and the components are not independent). The mean value parameter vector isntimes the mean value parameter vector for sample size one; the cumulant function isntimes the cumulant function for sample size one; the canonical parameter vector is the same for all sample sizes."multinomial"Multinomial with sample size one. The distribution of any random vector
Yhaving all components zero except for one component which is one (Yis the canonical statistic vector). The mean value parameter is the vector\mu = E(Y)having components\mu_i = E(Y_i) = \Pr(Y_i = 1).The mean value parameter vector
\muis given as a function of the canonical parameter vector\thetaby\mu_i = \frac{e^{\theta_i}}{\sum_{j = 1}^d e^{\theta_j}},where
dis the dimension ofYand\thetaand\mu. This transformation is not one-to-one; adding the same number to each component of\thetadoes not change the value of\mu. The cumulant function isc(\theta) = \log\left(\sum_{j = 1}^d e^{\theta_j}\right).This distribution is degenerate. The sum of the components of the canonical statistic is equal to one with probability one, which implies the nonidentifiability of the
d-dimensional canonical parameter vector mentioned above. Hence one parameter (at least) is always constrained to to be zero in fitting an aster model with a multinomial family.This distribution has many degenerate distributions. For any vector
\deltathe limit of distributions having canonical parameter vectors\theta + s \deltaass \to \inftyexists and is another multinomial distribution (the limit distribution in the direction\delta). LetAbe the set ofisuch that\delta_i = \max(\delta), where\max(\delta)denotes the maximum over the components of\delta. Then the limit distribution in the direction\deltahas componentsY_iof the canonical statistic fori \notin Aconcentrated at zero. The cumulant function of this degenerate distribution isc(\theta) = \log\left(\sum_{j \in A} e^{\theta_j}\right).The canonical parameters
\theta_jforj \notin Aare not identifiable, and one other canonical parameter is not identifiable because of the constraint that the sum of the components of the canonical statistic is equal to one with probability one.For predecessor (sample size)
n, the successor is the sum ofnIID multinomial-sample-size-one random vectors, that is, multinomial with sample sizen. The mean value parameter isntimes the mean value parameter for sample size one; the cumulant function isntimes the cumulant function for sample size one; the canonical parameter is the same for all sample sizes.
Value
a list of class "astfam" giving name and values of any
hyperparameters.
Examples
fam.bernoulli()
fam.multinomial(4)