meldtTest {asht} | R Documentation |
Meld t Test
Description
Tests for a difference in parameters, when the parameter estimates are independent and both have t distributions.
Usage
meldtTest(x, y, alternative = c("two.sided", "less", "greater"), delta = 0,
conf.level = 0.95, control = bfControl(), ...)
Arguments
x |
a list from the first group with objects: estimate (estimate of parameter), stderr (standard error of the estimate), and df (degrees of freedom associated with t distribution) |
y |
a list from the second group with objects: estimate, stderr, and df |
alternative |
a character string specifying the alternative
hypothesis, must be one of |
delta |
a number indicating the null hypothesis value of the
difference in parameters when |
conf.level |
confidence level of the interval. |
control |
a list of arguments used for determining the calculation algorithm, see |
... |
further arguments to be passed to or from methods (currently not used) |
Details
Suppose x$estimate and y$estimate estimate the parameters xParm and yParm. Let Delta=yParm-xParm. This function tests hypotheses of the form,
alternative="two.sided" tests H0: Delta=delta versus H1: Delta != delta
alternative="less" tests H0: Delta >= delta versus H1: Delta< delta
alternative="greater" tests H0: Delta <= delta versus H1: Delta> delta
The test uses the theory of melding (Fay, Proschan and Brittain, 2015). The idea is to use confidence distribution random variables (CD-RVs). It is easiest to understand the melding confidence intervals by looking at the Monte Carlo implementation. Let nmc be the number of Monte Carlo replicates, then the simulated CD-RV associated with x are Bx = x$estimate + x$stderr * rt(nmc,df=x$df). Similarly define By. Then the 95 percent melded confidence interval for Delta=yParm-xParm is estimated by quantile(By-Bx, probs=c(0.025,0.975)).
When the estimates are means from normal distributions, then the meldtTest reduces to the Behrens-Fisher solution (see bfTest
).
Only one of x$stderr
or y$stderr
may be zero.
Value
A list with class "htest"
containing the following components:
statistic |
the value of the t-statistic. |
parameter |
R = |
p.value |
the p-value for the test. |
conf.int |
a confidence interval for the difference in means appropriate to the specified alternative hypothesis. |
estimate |
means and difference in means estimates |
null.value |
the specified hypothesized value of the difference in parameters |
alternative |
a character string describing the alternative hypothesis. |
method |
a character string describing the test. |
data.name |
a character string giving the name(s) of the data. |
Warning
If the two estimates are not independent, this function may give invalid p-values and confidence intervals!
Author(s)
Michael P. Fay
References
Fay, MP, Proschan, MA, Brittain, E (2015). Combining One-sample confidence procedures for inference in the two-sample case. Biometrics. 71: 146-156.
See Also
Examples
## Classical example: Student's sleep data
## Compare to bfTest
xValues<- sleep$extra[sleep$group==1]
yValues<- sleep$extra[sleep$group==2]
x<-list(estimate=mean(xValues),
stderr=sd(xValues)/sqrt(length(xValues)),
df=length(xValues)-1)
y<-list(estimate=mean(yValues),
stderr=sd(yValues)/sqrt(length(yValues)),
df=length(yValues)-1)
bfTest(xValues,yValues)
# by convention the meldtTest does mean(y)-mean(x)
meldtTest(x,y)
meldtTest(y,x)