rmvm {asbio} | R Documentation |
A multivariate normal dataset for data mining
Description
Contains a Y variable constrained to be a random function of fifteen X variables, which, in turn, are generated from a multivariate normal distribution with no correlation between dimensions.
Usage
data("rmvm")
Format
A data frame with 500 observations on the following 16 variables.
Y
A response vector defined to be:
Y = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11} + X_{12} + X_{13} + X_{14} + X_{15} + \epsilon
where\epsilon \sim N(0, 1)
.X1
A random predictor
X2
A random predictor
X3
A random predictor
X4
A random predictor
X5
A random predictor
X6
A random predictor
X7
A random predictor
X8
A random predictor
X9
A random predictor
X10
A random predictor
X11
A random predictor
X12
A random predictor
X13
A random predictor
X14
A random predictor
X15
A random predictor
Details
Data used by Derryberry et al. (in review) to consider high dimensional model selection applications.
References
Derryberry, D., Aho, K., Peterson, T., Edwards, J. (In review). Finding the "best" second order regression model in a polynomial number of steps. American Statistician.
Examples
## Code used to create data
## Not run:
sigma <- matrix(nrow = 15, ncol = 15, 0)
diag(sigma) = 1
mvn <- rmvnorm(n=500, mean=rnorm(15), sigma=sigma)
Y <- mvn[,1] + mvn[,2] + mvn[,3] + mvn[,4] + mvn[,4] + mvn[,5] + mvn[,6] + mvn[,7] +
mvn[,8] + mvn[,9] + mvn[,10] + mvn[,11] + mvn[,12] + mvn[,13] + mvn[,14] + mvn[15] + rnorm(500)
rmvm <- data.frame(cbind(Y, mvn))
names(rmvm) <- c("Y", paste("X", 1:15, sep = ""))
## End(Not run)