partial.resid.plot {asbio} | R Documentation |
Partial residual plots for interpretation of multiple regression.
Description
The function creates partial residual plots which help a user graphically determine the effect of a single predictor with respect to all other predictors in a multiple regression model.
Usage
partial.resid.plot(x, smooth.span = 0.8, lf.col = 2, sm.col = 4,...)
Arguments
x |
A output object of class |
smooth.span |
Degree of smoothing for smoothing line. |
lf.col |
Color for linear fit. |
sm.col |
Color for smoother fit. |
... |
Additional arguments from |
Details
Creates partial residual plots (see Kutner et al. 2002). Smoother lines from lowess
and linear fits from lm
are imposed over plots to help an investigator determine the effect of a particular X variable on Y with all other variables in the model. The function automatically inserts explanatory variable names on axes.
Value
Returns p partial residual plots, where p = the number of explanatory variables.
Author(s)
Ken Aho
References
Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.
See Also
Examples
if(interactive()){
Soil.C<-c(13,20,10,11,2,25,30,25,23)
Soil.N<-c(1.2,2,1.5,1,0.3,2,3,2.7,2.5)
Slope<-c(15,14,16,12,10,18,25,24,20)
Aspect<-c(45,120,100,56,5,20,5,15,15)
Y<-c(20,30,10,15,5,45,60,55,45)
x <- lm(Y ~ Soil.N + Soil.C + Slope + Aspect)
op <- par(mfrow=c(2,2),mar=c(5,4,1,1.5))
partial.resid.plot(x)
par(op)
}