ci.mu.z {asbio} | R Documentation |
Z and t confidence intervals for mu.
Description
These functions calculate t and z confidence intervals for \mu
. Z confidence intervals require specification (and thus knowledge) of \sigma
. Both methods assume underlying normal distributions although this assumption becomes irrelevant for large sample sizes. Finite population corrections are provided if requested.
Usage
ci.mu.z(data, conf = 0.95, sigma = 1, summarized = FALSE, xbar = NULL,
fpc = FALSE, N = NULL, n = NULL, na.rm = FALSE)
ci.mu.t(data, conf = 0.95, summarized = FALSE, xbar = NULL, sd = NULL,
fpc = FALSE, N = NULL, n = NULL, na.rm = FALSE)
Arguments
data |
A vector of quantitative data. Required if |
conf |
Confidence level; 1 - P(type I error). |
sigma |
The population standard deviation. |
summarized |
A logical statement specifying whether statistical summaries are to be used. If |
xbar |
The sample mean. Required if |
fpc |
A logical statement specifying whether a finite population correction should be made. If |
N |
The population size. Required if |
sd |
The sample standard deviation. Required if |
n |
The sample size. Required if |
na.rm |
Logical, indicate whether |
Details
ci.mu.z
and ci.mu.t
calculate confidence intervals for either summarized data or a
dataset provided in data
. Finite population corrections are made if a user specifies fpc=TRUE
and
provides some value for N
.
Value
Returns a list of class = "ci"
. Default printed results are the parameter estimate and confidence bounds. Other invisible
objects include:
Margin |
the confidence margin. |
Author(s)
Ken Aho
References
Lohr, S. L. (1999) Sampling: Design and Analysis. Duxbury Press. Pacific Grove, USA.
See Also
Examples
#With summarized=FALSE
x<-c(5,10,5,20,30,15,20,25,0,5,10,5,7,10,20,40,30,40,10,5,0,0,3,20,30)
ci.mu.z(x,conf=.95,sigma=4,summarized=FALSE)
ci.mu.t(x,conf=.95,summarized=FALSE)
#With summarized = TRUE
ci.mu.z(x,conf=.95,sigma=4,xbar=14.6,n=25,summarized=TRUE)
ci.mu.t(x,conf=.95,sd=4,xbar=14.6,n=25,summarized=TRUE)
#with finite population correction and summarized = TRUE
ci.mu.z(x,conf=.95,sigma=4,xbar=14.6,n=25,summarized=TRUE,fpc=TRUE,N=100)
ci.mu.t(x,conf=.95,sd=4,xbar=14.6,n=25,summarized=TRUE,fpc=TRUE,N=100)