predict {arules} | R Documentation |
Model Predictions
Description
Provides the method predict()
for itemMatrix (e.g.,
transactions). Predicts the membership (nearest neighbor) of new data to
clusters represented by medoids or labeled examples.
Usage
predict(object, ...)
## S4 method for signature 'itemMatrix'
predict(object, newdata, labels = NULL, blocksize = 200, ...)
Arguments
object |
clustered examples as an itemMatrix with cluster label specified in |
... |
further arguments passed on to |
newdata |
an itemMatrix containing the objects to predict labels for. |
labels |
an integer vector containing the labels for the examples in
|
blocksize |
a numeric scalar indicating how much memory predict can use
for big |
Value
An integer vector of the same length as newdata
containing
the predicted labels for each element.
Author(s)
Michael Hahsler
See Also
Other proximity classes and functions:
affinity()
,
dissimilarity()
,
proximity-classes
Examples
data("Adult")
## sample
small <- sample(Adult, 500)
large <- sample(Adult, 5000)
## cluster a small sample and extract the cluster lael vector
d_jaccard <- dissimilarity(small)
hc <- hclust(d_jaccard)
l <- cutree(hc, k=4)
## predict labels for a larger sample
labels <- predict(small, large, l)
## plot the profile of the 1. cluster
itemFrequencyPlot(large[labels == 1, itemFrequency(large) > 0.1])