| ASparameter-classes {arules} | R Documentation |
Classes ASparameter, APparameter, ECparameter — Specifying the parameter Argument of APRIORI and ECLAT
Description
The ASparameter class holds the mining parameters (e.g., minimum
support) for the used mining algorithms. APparameter and
ECparameter directly extend ASparameter with additional slots
for parameters only suitable for apriori() (APparameter) or eclat()
(ECparameter).
Slots
supporta numeric value for the minimal support of an item set (default:
0.1)minlenan integer value for the minimal number of items per item set (default: 1 item)
maxlenan integer value for the maximal number of items per item set (default: 10 items)
targeta character string indicating the type of association mined. Partial names are matched. Available targets are:
-
"frequent itemsets" -
"maximally frequent itemsets" -
"generator frequent itemsets" -
"closed frequent itemsets" -
"rules"only available for apriori; use ruleInduction for eclat. -
"hyperedgesets"only available for apriori; see references for the definition of association hyperedgesets.
-
exta logical indicating whether to report coverage (i.e., LHS-support) as an extended quality measure (default:
TRUE)confidencea numeric value for the minimal confidence of rules/association hyperedges (default:
0.8). For frequent itemsets it is set toNA.smaxa numeric value for the maximal support of itemsets/rules/hyperedgesets (default: 1)
arema character string indicating the used additional rule evaluation measure (default:
"none") given by one of-
"none": no additional evaluation measure -
"diff": absolute confidence difference -
"quot": difference of confidence quotient to 1 -
"aimp": absolute difference of improvement to 1 -
"info": information difference to prior -
"chi2": normalized\chi^2measure
Note: The measure is only reported if
avalis set toTRUE. Useminvalto set minimum thresholds on the measures.-
avala logical indicating whether to return the additional rule evaluation measure selected with
arem.minvala numeric value for the minimal value of additional evaluation measure selected with
arem(default:0.1)originalSupporta logical indicating whether to use the original definition of minimum support (support of the LHS and RHS of the rule). If set to
FALSEthen the support of the LHS (also called coverage of the rule) is returned as support. The minimum support threshold is applied to this support. (default:TRUE)maxtimeTime limit in seconds for checking subsets.
maxtime = 0disables the time limit. (default: 5 seconds)tidListsa logical indicating whether
eclat()should return also a list of supporting transactions IDs. (default:FALSE)
Available Slots by Subclass
-
APparameter:confidence,minval,smax,arem,aval,originalSupport,maxtime,support,minlen,maxlen,target,ext -
ECparameter:tidLists,support,minlen,maxlen,target,ext
Objects from the Class
A suitable default parameter object will be
automatically created by apriori() or
eclat(). By specifying a named list (names equal to
slots) as parameter argument for apriori() or
eclat(), the default values can be replaced with the values
in the list.
Objects can also be created via coercion.
Coercions
-
as("NULL", "APparameter") -
as("list", "APparameter") -
as("NULL", "ECparameter") -
as("list", "ECparameter")
Author(s)
Michael Hahsler and Bettina Gruen
References
Christian Borgelt (2004) Apriori — Finding Association Rules/Hyperedges with the Apriori Algorithm. https://borgelt.net/apriori.html
See Also
Other mining algorithms:
APappearance-class,
AScontrol-classes,
apriori(),
eclat(),
fim4r(),
ruleInduction(),
weclat()