AffinePlm {aroma.affymetrix} | R Documentation |
The AffinePlm class
Description
Package: aroma.affymetrix
Class AffinePlm
Object
~~|
~~+--
ParametersInterface
~~~~~~~|
~~~~~~~+--
Model
~~~~~~~~~~~~|
~~~~~~~~~~~~+--
UnitModel
~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~+--
MultiArrayUnitModel
~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~+--
ProbeLevelModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~~~~~~+--
AffinePlm
Directly known subclasses:
AffineCnPlm, AffineSnpPlm
public abstract static class AffinePlm
extends ProbeLevelModel
This class represents affine model in Bengtsson & Hossjer (2006).
Usage
AffinePlm(..., background=TRUE)
Arguments
... |
Arguments passed to |
background |
If |
Fields and Methods
Methods:
getProbeAffinityFile | - | |
Methods inherited from ProbeLevelModel:
calculateResidualSet, calculateWeights, fit, getAsteriskTags, getCalculateResidualsFunction, getChipEffectSet, getProbeAffinityFile, getResidualSet, getRootPath, getWeightsSet
Methods inherited from MultiArrayUnitModel:
getListOfPriors, setListOfPriors, validate
Methods inherited from UnitModel:
findUnitsTodo, getAsteriskTags, getFitSingleCellUnitFunction, getParameters
Methods inherited from Model:
as.character, fit, getAlias, getAsteriskTags, getDataSet, getFullName, getName, getPath, getRootPath, getTags, setAlias, setTags
Methods inherited from ParametersInterface:
getParameterSets, getParameters, getParametersAsString
Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach, equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, names, objectSize, print, save, asThis
Model
For a single unit group, the affine model is:
y_{ik} = a + \theta_i \phi_k + \varepsilon_{ik}
where a
is an offset common to all probe signals,
\theta_i
are the chip effects for arrays i=1,...,I
,
and \phi_k
are the probe affinities for probes k=1,...,K
.
The \varepsilon_{ik}
are zero-mean noise with equal variance.
The model is constrained such that \prod_k \phi_k = 1
.
Note that with the additional constraint a=0
(see arguments above),
the above model is very similar to MbeiPlm
. The differences in
parameter estimates is due to difference is assumptions about the
error structure, which in turn affects how the model is estimated.
Author(s)
Henrik Bengtsson
References
Bengtsson & Hossjer (2006).