boot_re {argo} | R Documentation |
wrapper for bootstrap relative efficiency confidence interval
Description
This function is used to wrap the bootstrap_relative_efficiency
,
taking vectorized arguments.
Usage
boot_re(
pred_data,
period.all,
model_good,
bench.all,
type,
truth = "CDC.data",
l = 50,
N = 10000,
sim = "geom",
conf = 0.95
)
Arguments
pred_data |
A matrix that contains the truth vector and the predictions. It can be data.frame or xts object |
period.all |
vector of the periods to evaluate relative efficiency |
model_good |
The model to evaluate, must be in the column names of pred_data |
bench.all |
vector of the models to compare to, must be in the column names of pred_data |
type |
Must be one of "mse" (mean square error), "mape" (mean absolute percentage error), or "mae" (mean absolute error) |
truth |
the column name of the truth |
l |
stationary bootstrap mean block length |
N |
number of bootstrap samples |
sim |
simulation method, pass to boot::tsboot |
conf |
confidence level |
Value
A vector of point estimate and corresponding bootstrap confidence interval
Examples
GFT_xts = xts::xts(exp(matrix(rnorm(500), ncol=5)), order.by = Sys.Date() - (100:1))
names(GFT_xts) <- paste0("col", 1:ncol(GFT_xts))
names(GFT_xts)[1] <- "CDC.data"
boot_re(
pred_data = GFT_xts,
period.all = c(paste0(zoo::index(GFT_xts)[1], "/", zoo::index(GFT_xts)[50]),
paste0(zoo::index(GFT_xts)[51], "/", zoo::index(GFT_xts)[100])),
model_good = "col2",
bench.all = c("col3", "col4"),
type = "mse",
truth="CDC.data",
l = 5,
N = 20
)
[Package argo version 3.0.2 Index]