nardl_uecm_sym {ardl.nardl}R Documentation

Short-run symmetry restrictions (SRSR) and the longrun symmetry restrictions (LRSR).

Description

~~ Performs one of Short-run symmetry restrictions or the longrun symmetry restrictions.

Usage

nardl_uecm_sym(x, assumption = c("SRSR"), decomp, d = Inf, control = c(2), 
c_q_order = c(2), p_order = c(3), q_order = c(4), dep_var, graph_save = FALSE, case = 3)

Arguments

x

A dataframe object. S3 dataframe object not applicable.

assumption

The Short-run symmetry restrictions (SRSR), the default, assume the transitory asymmetric effect is insignificant and testing the longrun asymmetric effect. longrun symmetry restrictions (LRSR) imposes symmetric effect on the longrun coefficients of the positive and negative decomposed variable, and assuming the presence of transitory asymmetric effect.

decomp

A variable to be decomposed into positive (pos) and negative (neg)

d

An integer or character vector. The default value Inf for the threshold value (d) is adopted when computing the partial sum. Inf is the implicit threshold for the partial sum whenever the base 'cumsum' function is adopted. The value of d can be 'mean' or 0 and any other integer specified as the threshold value for the partial sum.

control

A character vector with one element serving as the second variable single control variable. The default is c(2) and applicable when control variable is specified.

c_q_order

Lag order for the control. The default value is c(2) and only applicable when control is specified.

p_order

Number of lags for dependent variable (dep_var).

q_order

Short-run lags for each positive and negative decomposed variable. In case the LM test null hypothesis of no serial correlation is rejected, consider increasing the lags, in particular, the p_order or both p_order and q_order lags until the null hypothesis is accepted.

dep_var

Character vector which contain the dependent variable.

graph_save

Logical (default is FALSE). If TRUE, stability plot is displayed.

case

A numerical vector of either 1, 2 3, 4 or 5. The default value is 3. See details for more information.

Details

The Short-run symmetry restrictions (SRSR), the default may be useful in obtaining more accurate estimate when the sample is small (SYG, 2014). Besides, this may be necessary when the short-run asymmetric effect does not exist. longrun symmetry restrictions (LRSR) imposes symmetric effect on the positive and negative decomposed variable.

Value

NARDL_ECM_fit

This display the NARDL ECM lm fit

UECM

This display the summary results of the estimated unrestricted error correction models

cointegration

This presents the Pesaran, Shin, and Smith (2001) cointegration test. The critical F and t statistics obtained if the sample is greater than 80 are asymptotic. If you adopt this segment, please consider citing Pesaran et al (2001) and Jordan and Philips (2020) dynamac package. If the sample is less than or equal to 80, for case 1, the F and t statistics adopted are large sample asymptotic critical value (CV) and no small-sample asymptotic critical value available. When case = 3 or 5, the critical value of F statistic is small sample asymptotic, and the adopted t statistics are large sample asymptotic CV. Consider including Narayan (2005) in your citation list. If the sample is greater than 80, for case 1, 3 and 5, large sample asymptotic CV for F and t statistics are adopted. In case 2 and 4, for sample <= 80, the F statistic are small sample asymptotic and no asymptotic CV for the t statistic. If sample > 80, for case 2 and 4, large sample asymptotic CV for F is adopted and no t-statistic CV.

Longrun_relation

The estimated longrun relations

asymmetric test

This contains the asymmetric test

diagnostics test

This presents the Breusch-Godfrey test for higher-order serial correlation with null hypothesis of no serial correlation, the Autoregressive Conditional Heteroscedasticity (ARCH) LM-test with the null hypothesis of no ARCH effect and the Jarque-Bera normality test with null hypothesis of normality. This ARCH LM function is derived from Zaghdoudi (2018)

Note

The decomposed variable should display both positive and negative change, preferably on a balanced scale. However, when a variable display only positive change and no negative change, vice versa, such variable should not be adopted (i.e decomposed).

References

Jordan S, Philips A (2020). _dynamac: Dynamic Simulation and Testing for Single-Equation ARDL Models_. R package version 0.1.11

Narayan, P. K. (2005). The saving and investment nexus for China: evidence from cointegration tests. Applied economics, 37(17), 1979-1990.

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326.

Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In: Sickles, R., Horrace, W. (eds) Festschrift in Honor of Peter Schmidt. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8008-3_9

Zaghdoudi, T. (2018). nardl: Nonlinear Cointegrating Autoregressive Distributed Lag Model_. R package version 0.1.5

See Also

ardl_uecm nardl_uecm pssbounds

Examples

data(syg_data)
out_srsr <- nardl_uecm_sym(x = syg_data,
             decomp  = 'ca_ip', 
             assumption = c('SRSR'),
             control =NULL,
             p_order =5,
             q_order =3,
             dep_var = 'ca_u',
             graph_save = FALSE, 
             case = 3)
out_srsr

out_lrsr <- nardl_uecm_sym(x = syg_data,
                           decomp  = 'ca_ip', 
                           assumption = c('LRSR'),
                           control =NULL,
                           p_order =5,
                           q_order =3,
                           dep_var = 'ca_u',
                           graph_save = FALSE, 
                           case = 3)
out_lrsr

[Package ardl.nardl version 1.3.0 Index]