ardl.nardl-package {ardl.nardl} | R Documentation |
Linear and Nonlinear Autoregressive Distributed Lag Models: General-to-Specific Approach
Description
Estimate the linear and nonlinear autoregressive distributed lag (ARDL & NARDL) models and the corresponding error correction models, and test for longrun and short-run asymmetric. The Pesaran, Shin & Smith (2001) Bounds test for level relationships is also provided with the aid of Jordan and Philips (2020) pssbounds function. In addition, the 'ardl.nardl' package also performs short-run and longrun symmetric restrictions available at Shin et al. (2014) and their corresponding tests.
References
Jordan S, Philips A (2020). _dynamac: Dynamic Simulation and Testing for Single-Equation ARDL Models_. R package version 0.1.11
Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326. https://doi.org/10.1002/jae.616
Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In: Sickles, R., Horrace, W. (eds) Festschrift in Honor of Peter Schmidt. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8008-3_9
Examples
## Not run:
data(fuel_price)
data(expectation)
out1 <- gets_ardl_uecm(x = expectation,
dep_var = c('nq_inf_exp'),
expl_var = c('food_inf','nethawkish'),
p_order = c(4),
q_order = c(5,7),
gets_pval = 0.1,
case = 4,
graph_save = FALSE,
F_HC = FALSE,
order_l = 7)
out1
out2 <- gets_nardl_uecm(x = expectation,
decomp = 'food_inf',
dep_var = 'nq_inf_exp',
control = 'nethawkish',
c_q_order = c(3),
p_order = c(3),
q_order = c(3),
gets_pval = 0.1,
graph_save = FALSE,
case = 5,
F_HC = FALSE)
out2
OUT3 <- auto_case_ardl(x = expectation,
dep_var = 'n12m_inf_exp',
expl_var = c('food_inf',"hawkish","dovish"),
p_order = 2,
q_order = c(4,4,4),
gets_pval = 0.05,
graph_save = FALSE,
order_l = 7)
OUT3
OUT4 <- nardl_auto_case(x = fuel_price,
decomp = 'wti',
dep_var = 'fpp',
control = 'bdc',
c_q_order = c(5),
p_order = c(5),
q_order = c(6),
gets_pval = 0.1,
order_l = 4,
graph_save = FALSE)
OUT4
uecm_case3 <- ardl_uecm(x = fuel_price,
dep_var = c('fpp'),
expl_var = c('bdc', 'wti'),
p_order =c(6),
q_order =c(5,3),
graph_save = FALSE,
case = 3)
uecm_case3
output_n1_case5 <- nardl_uecm(x = fuel_price,
decomp = c('bdc'),
control =c('wti'),
c_q_order = c(2),
p_order = c(3),
q_order = c(5),
dep_var = c('fpp'),
graph_save = FALSE,
case = 5)
output_n1_case5
data(syg_data)
out_srsr <- nardl_uecm_sym(x = syg_data,
decomp = 'ca_u',
assumption = c('SRSR'),
control =NULL,
p_order =5,
q_order =3,
dep_var = 'ca_ip',
graph_save = FALSE,
case = 3)
out_srsr
out_lrsr <- nardl_uecm_sym(x = syg_data,
decomp = 'ca_u',
assumption = c('LRSR'),
control =NULL,
p_order =5,
q_order =3,
dep_var = 'ca_ip',
graph_save = FALSE,
case = 3)
out_lrsr
## End(Not run)