missingDataGrid {aqp} | R Documentation |
Missing Data Grid
Description
Generate a levelplot of missing data from a SoilProfileCollection object.
Usage
missingDataGrid(
s,
max_depth,
vars,
filter.column = NULL,
filter.regex = NULL,
cols = NULL,
...
)
Arguments
s |
a SoilProfileCollection object |
max_depth |
integer specifying the max depth of analysis |
vars |
character vector of column names over which to evaluate missing data |
filter.column |
a character string naming the column to apply the filter REGEX to |
filter.regex |
a character string with a regular expression used to filter horizon data OUT of the analysis |
cols |
a vector of colors |
... |
additional arguments passed on to |
Details
This function evaluates a missing data fraction
based on slice-wise
evaluation of named variables in a SoilProfileCollection
object.
Value
A data.frame
describing the percentage of missing data by
variable.
Note
A lattice graphic is printed to the active output device.
Author(s)
D.E. Beaudette
See Also
Examples
# 10 random profiles
set.seed(10101)
s <- lapply(as.character(1:10), random_profile)
s <- do.call('rbind', s)
# randomly sprinkle some missing data
s[sample(nrow(s), 5), 'p1'] <- NA
s[sample(nrow(s), 5), 'p2'] <- NA
s[sample(nrow(s), 5), 'p3'] <- NA
# set all p4 and p5 attributes of `soil 1' to NA
s[which(s$id == '1'), 'p5'] <- NA
s[which(s$id == '1'), 'p4'] <- NA
# upgrade to SPC
depths(s) <- id ~ top + bottom
# plot missing data via slicing + levelplot
missingDataGrid(
s,
max_depth = 100,
vars = c('p1', 'p2', 'p3', 'p4', 'p5'),
main='Missing Data Fraction'
)
[Package aqp version 2.0.4 Index]