| missingDataGrid {aqp} | R Documentation | 
Missing Data Grid
Description
Generate a levelplot of missing data from a SoilProfileCollection object.
Usage
missingDataGrid(
  s,
  max_depth,
  vars,
  filter.column = NULL,
  filter.regex = NULL,
  cols = NULL,
  ...
)
Arguments
| s | a SoilProfileCollection object | 
| max_depth | integer specifying the max depth of analysis | 
| vars | character vector of column names over which to evaluate missing data | 
| filter.column | a character string naming the column to apply the filter REGEX to | 
| filter.regex | a character string with a regular expression used to filter horizon data OUT of the analysis | 
| cols | a vector of colors | 
| ... | additional arguments passed on to  | 
Details
This function evaluates a missing data fraction based on slice-wise
evaluation of named variables in a SoilProfileCollection object.
Value
A data.frame describing the percentage of missing data by
variable.
Note
A lattice graphic is printed to the active output device.
Author(s)
D.E. Beaudette
See Also
Examples
# 10 random profiles
set.seed(10101)
s <- lapply(as.character(1:10), random_profile)
s <- do.call('rbind', s)
# randomly sprinkle some missing data
s[sample(nrow(s), 5), 'p1'] <- NA
s[sample(nrow(s), 5), 'p2'] <- NA
s[sample(nrow(s), 5), 'p3'] <- NA
# set all p4 and p5 attributes of `soil 1' to NA
s[which(s$id == '1'), 'p5'] <- NA
s[which(s$id == '1'), 'p4'] <- NA
# upgrade to SPC
depths(s) <- id ~ top + bottom
# plot missing data via slicing + levelplot
missingDataGrid(
  s,
  max_depth = 100,
  vars = c('p1', 'p2', 'p3', 'p4', 'p5'),
  main='Missing Data Fraction'
)
[Package aqp version 2.0.4 Index]