ROSETTA.centroids {aqp} | R Documentation |
Average Hydraulic Parameters from the ROSETTA Model by USDA Soil Texture Class
Description
Average soil hydraulic parameters generated by the first stage predictions of the ROSETTA model by USDA soil texture class. These data were extracted from ROSETTA documentation and re-formatted for ease of use.
Usage
data(ROSETTA.centroids)
Format
A data frame:
- texture
soil texture class, ordered from low to high available water holding capacity
- theta_r
average saturated water content
- theta_s
average residual water content
- alpha
average value, related to the inverse of the air entry suction, log10-transformed values with units of cm
- npar
average value, index of pore size distribution, log10-transformed values with units of 1/cm
- theta_r_sd
1 standard deviation of
theta_r
- theta_s_sd
1 standard deviation of
theta_s
- alpha_sd
1 standard deviation of
alpha
- npar_sd
1 standard deviation of
npar
- sat
approximate volumetric water content at which soil material is saturated
- fc
approximate volumetric water content at which matrix potential = -33kPa
- pwp
approximate volumetric water content at which matrix potential = -1500kPa
- awc
approximate available water holding capacity: VWC(-33kPa)
VWC(-1500kPa)
Details
Theoretical water-retention parameters for uniform soil material of each texture class have been estimated via van Genuchten model.
Source
ROSETTA Class Average Hydraulic Parameters
References
van Genuchten, M.Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils". Soil Science Society of America Journal. 44 (5): 892-898.
Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3–4): 163-176.
Examples
## Not run:
library(aqp)
library(soilDB)
library(latticeExtra)
data("ROSETTA.centroids")
# iterate over horizons and generate VG model curve
res <- lapply(1:nrow(ROSETTA.centroids), function(i) {
m <- KSSL_VG_model(VG_params = ROSETTA.centroids[i, ], phi_min = 10^-3, phi_max=10^6)$VG_curve
# copy generalized hz label
m$hz <- ROSETTA.centroids$hz[i]
# copy ID
m$texture_class <- ROSETTA.centroids$texture[i]
return(m)
})
# copy over lab sample number as ID
res <- do.call('rbind', res)
# check: OK
str(res)
# visual check: OK
xyplot(
phi ~ theta | texture_class, data=res,
type=c('l', 'g'),
scales=list(alternating=3, x=list(tick.number=10), y=list(log=10, tick.number=10)),
yscale.components=yscale.components.logpower,
ylab=expression(Suction~~(kPa)),
xlab=expression(Volumetric~Water~Content~~(cm^3/cm^3)),
par.settings = list(superpose.line=list(col='RoyalBlue', lwd=2)),
strip=strip.custom(bg=grey(0.85)),
as.table=TRUE
)
## End(Not run)