mdash.fun {approximator} | R Documentation |
Mean of Gaussian process
Description
Returns the mean of the Gaussian process conditional on the observations and the hyperparameters
Usage
mdash.fun(x, D1, subsets, hpa, Vinv = NULL, use.Vinv = TRUE, z, basis)
Arguments
x |
Point at which mean is desired |
D1 |
Code design matrix for level 1 code |
subsets |
subsets object |
hpa |
Hyperparameter object |
Vinv |
Inverse of the variance matrix; if |
use.Vinv |
Boolean, with default |
z |
observations |
basis |
Basis functions |
Author(s)
Robin K. S. Hankin
References
M. C. Kennedy and A. O'Hagan 2000. “Predicting the output from a complex computer code when fast approximations are available” Biometrika, 87(1): pp1-13
Examples
data(toyapps)
mdash.fun(x=1:3,D1=D1.toy,subsets=subsets.toy,hpa=hpa.toy,z=z.toy,basis=basis.toy)
uu <- rbind(1:3,1,3:1,1:3)
rownames(uu) <- c("first","second","third","fourth")
mdash.fun(x=uu,D1=D1.toy,subsets=subsets.toy,hpa=hpa.toy,z=z.toy,basis=basis.toy)
[Package approximator version 1.2-8 Index]