APHYLO_DEFAULT_MCMC_CONTROL {aphylo} | R Documentation |
Model estimation using Markov Chain Monte Carlo
Description
The function is a wrapper of fmcmc::MCMC()
.
Usage
APHYLO_DEFAULT_MCMC_CONTROL
aphylo_mcmc(
model,
params,
priors = uprior(),
control = list(),
check_informative = getOption("aphylo_informative", FALSE),
reduced_pseq = getOption("aphylo_reduce_pseq", TRUE)
)
APHYLO_PARAM_DEFAULT
Arguments
model |
A model as specified in aphylo-model. |
params |
A vector of length 7 with initial parameters. In particular
|
priors |
A function to be used as prior for the model (see bprior). |
control |
A list with parameters for the optimization method (see details). |
check_informative |
Logical scalar. When |
reduced_pseq |
Logical. When |
Format
An object of class list
of length 6.
An object of class numeric
of length 9.
Details
APHYLO_DEFAULT_MCMC_CONTROL
lists the default values for the MCMC
estimation:
-
nsteps
:1e4L
-
burnin
:5e3L
-
thin
:10L
-
nchains
:2L
-
multicore
:FALSE
-
conv_checker
:fmcmc::convergence_auto(5e3)
For more information about the MCMC estimation process, see fmcmc::MCMC()
.
Methods base::print()
, base::summary()
, stats::coef, stats::window()
,
stats::vcov()
, stats::logLik()
, predict(),
and the various ways to query features of the trees via Ntip()
are available post estimation.
The vector APHYLO_PARAM_DEFAULT
lists the starting values for the parameters
in the model. The current defaults are:
-
psi0
: 0.10 -
psi1
: 0.05 -
mu_d0
: 0.90 -
mu_d1
: 0.50 -
mu_s0
: 0.10 -
mu_s1
: 0.05 -
eta0
: 1.00 -
eta1
: 1.00 -
Pi
: 0.50
Value
An object of class aphylo_estimates.
See Also
Other parameter estimation:
aphylo_mle()
Examples
# Using the MCMC ------------------------------------------------------------
set.seed(1233)
# Simulating a tree
tree <- sim_tree(200)
# Simulating functions
atree <- raphylo(
tree = tree,
psi = c(.01, .03),
mu_d = c(.05, .02),
Pi = .5
)
# Running the MCMC
set.seed(1231)
ans_mcmc <- aphylo_mcmc(
atree ~ mu_d + psi + eta + Pi,
control = list(nsteps = 2e5, burnin=1000, thin=200)
)