apc.plot.fit.residuals {apc}R Documentation

Level plots of residuals / fitted values / linear predictors

Description

Level plots of residuals / fitted values / linear predictors. Returns residuals / fitted values / linear predictors as matrices when requested. The plots use apc.plot.data.level. They plot are given in the original coordinate system.

Usage

apc.plot.fit.residuals(apc.fit.model,
					rotate=FALSE,main=NULL,lab=NULL,
					contour=FALSE,colorkey=TRUE,return=FALSE)
	   apc.plot.fit.fitted.values(apc.fit.model,
					rotate=FALSE,main=NULL,lab=NULL,
					contour=FALSE,colorkey=TRUE,return=FALSE)
	   apc.plot.fit.linear.predictors(apc.fit.model,
					rotate=FALSE,main=NULL,lab=NULL,
					contour=FALSE,colorkey=TRUE,return=FALSE)

Arguments

apc.fit.model

List. Output from apc.fit.model. See there for a description of the format.

rotate

Optional. Logical. If TRUE rotates plot 90 degrees clockwise (or anti-clockwise if data.format is "CL"). Default is FALSE.

main

Optional. Character. Main title.

lab

Optional plot parameter. A numerical vector of the form c(x, y, len) which modifies the default way that axes are annotated. The values of x and y give the (approximate) number of tickmarks on the x and y axes. len is not implemented.

contour

Optional levelplot (lattice) parameter. Logical. Contour lines drawn if TRUE. Default FALSE.

colorkey

Optional levelplot (lattice) parameter. Logical or list. Determines color key. Default TRUE.

return

Optional. Logical. If TRUE returns matrix with values. Default is FALSE.

Value

Matrix of the original format with residuals / fitted values /linear predictors as entries. Only produced if return is set to TRUE.

Author(s)

Bent Nielsen <bent.nielsen@nuffield.ox.ac.uk> 26 Apr 2015

See Also

data.Italian.bladder.cancer for information on the data used in the example.

Examples

#####################
#	Example with Italian bladder cancer data

data.list	<- data.Italian.bladder.cancer()
fit			<- apc.fit.model(data.list,"poisson.dose.response","APC")
apc.plot.fit.fitted.values(fit,return=TRUE)

#       1955-1959   1960-1964   1965-1969   1970-1974   1975-1979
# 25-29   3.04200    3.368944    2.261518    2.327538   12.000000
# 30-34  13.11980   12.835733   13.955859   10.416142    9.672462
# 35-39  24.15536   33.591644   33.388355   37.542301   26.322340
# 40-44  69.89262   68.842728   96.652963   98.478793  113.132896
# 45-49 217.97285  189.375728  189.115063  272.281239  285.255119
# 50-54 450.44864  529.823519  462.504305  469.869189  701.354350
# 55-59 724.88451  904.298410 1069.452434  969.346982  966.017661
# 60-64 877.17820 1226.088350 1532.521380 1877.331703 1807.880364
# 65-69 950.36106 1296.011123 1798.196048 2336.012274 3028.419493
# 70-74 903.94495 1187.708772 1598.021907 2302.605072 3222.719298
# 75-79 831.00000  953.055049 1280.930166 1755.788768 2678.226017

[Package apc version 2.0.0 Index]