apc.plot.fit.residuals {apc} | R Documentation |
Level plots of residuals / fitted values / linear predictors
Description
Level plots of residuals / fitted values / linear predictors.
Returns residuals / fitted values / linear predictors as matrices when requested.
The plots use apc.plot.data.level
.
They plot are given in the original coordinate system.
Usage
apc.plot.fit.residuals(apc.fit.model,
rotate=FALSE,main=NULL,lab=NULL,
contour=FALSE,colorkey=TRUE,return=FALSE)
apc.plot.fit.fitted.values(apc.fit.model,
rotate=FALSE,main=NULL,lab=NULL,
contour=FALSE,colorkey=TRUE,return=FALSE)
apc.plot.fit.linear.predictors(apc.fit.model,
rotate=FALSE,main=NULL,lab=NULL,
contour=FALSE,colorkey=TRUE,return=FALSE)
Arguments
apc.fit.model |
List. Output from |
rotate |
Optional. Logical. If TRUE rotates plot 90 degrees clockwise (or anti-clockwise if data.format is "CL"). Default is FALSE. |
main |
Optional. Character. Main title. |
lab |
Optional |
contour |
Optional |
colorkey |
Optional |
return |
Optional. Logical. If TRUE returns matrix with values. Default is FALSE. |
Value
Matrix of the original format with residuals / fitted values /linear predictors as entries.
Only produced if return
is set to TRUE.
Author(s)
Bent Nielsen <bent.nielsen@nuffield.ox.ac.uk> 26 Apr 2015
See Also
data.Italian.bladder.cancer
for information on the data used in the example.
Examples
#####################
# Example with Italian bladder cancer data
data.list <- data.Italian.bladder.cancer()
fit <- apc.fit.model(data.list,"poisson.dose.response","APC")
apc.plot.fit.fitted.values(fit,return=TRUE)
# 1955-1959 1960-1964 1965-1969 1970-1974 1975-1979
# 25-29 3.04200 3.368944 2.261518 2.327538 12.000000
# 30-34 13.11980 12.835733 13.955859 10.416142 9.672462
# 35-39 24.15536 33.591644 33.388355 37.542301 26.322340
# 40-44 69.89262 68.842728 96.652963 98.478793 113.132896
# 45-49 217.97285 189.375728 189.115063 272.281239 285.255119
# 50-54 450.44864 529.823519 462.504305 469.869189 701.354350
# 55-59 724.88451 904.298410 1069.452434 969.346982 966.017661
# 60-64 877.17820 1226.088350 1532.521380 1877.331703 1807.880364
# 65-69 950.36106 1296.011123 1798.196048 2336.012274 3028.419493
# 70-74 903.94495 1187.708772 1598.021907 2302.605072 3222.719298
# 75-79 831.00000 953.055049 1280.930166 1755.788768 2678.226017