apc.indiv.compare.direct {apc} | R Documentation |
Implements direct tests between APC models
Description
This function allows the user to directly compare any of the APC model, its submodels, or the TS model to any smaller model. For example, the function can be used to compare the TS to the Ad model or the Ad model to the A model. Comparisons are by likelihood ratio or Wald tests.
Usage
apc.indiv.compare.direct(data, big.model, small.model, unit=1,
dep.var, covariates=NULL, model.family,
n.coh.excl.start=0, n.coh.excl.end=0,
n.age.excl.start=0, n.age.excl.end=0,
n.per.excl.start=0, n.per.excl.end=0,
NR.controls=NULL, test, dist,
wt.var=NULL, plmmodel="notplm", id.var=NULL)
apc.indiv.waldtest.fullapc(data, dist="F", big.model="APC",
small.model, dep.var, covariates=NULL,
model.family="gaussian", unit=1,
n.coh.excl.start=0, n.coh.excl.end=0,
n.age.excl.start=0, n.age.excl.end=0,
n.per.excl.start=0, n.per.excl.end=0,
existing.big.model.fit=NULL,
existing.small.model.fit=NULL,
existing.collinear=NULL,
plmmodel = "notplm", id.var=NULL, wt.var=NULL)
apc.indiv.waldtest.TS(data, dist="F", small.model="APC",
dep.var, covariates=NULL,
model.family="gaussian", unit=1,
n.coh.excl.start=0, n.coh.excl.end = 0,
n.age.excl.start=0, n.age.excl.end = 0,
n.per.excl.start=0, n.per.excl.end = 0,
existing.small.model.fit=NULL,
existing.big.model.fit=NULL,
existing.collinear=NULL)
apc.indiv.LRtest.fullapc(data, big.model="APC",
small.model,
dep.var, covariates=NULL,
model.family="binomial", unit=1,
n.coh.excl.start=0, n.coh.excl.end=0,
n.age.excl.start=0, n.age.excl.end=0,
n.per.excl.start=0, n.per.excl.end=0,
existing.big.model.fit=NULL,
existing.small.model.fit=NULL,
existing.collinear=NULL)
apc.indiv.LRtest.TS(data, small.model="APC", dep.var, covariates=NULL,
model.family="binomial", unit=1,
n.coh.excl.start=0, n.coh.excl.end=0,
n.age.excl.start=0, n.age.excl.end=0,
n.per.excl.start=0, n.per.excl.end=0,
existing.small.model.fit=NULL,
existing.big.model.fit=NULL,
existing.collinear=NULL,
NR.controls=NULL)
Arguments
data |
The data.frame in use. |
big.model |
The name of the larger of the two models to be tested. |
small.model |
The name of the smaller of the two models to be tested. |
unit |
The interval at which age, period, and cohort are recorded (must be the same for each). Default 1. |
dep.var |
The name of the dependent variable as it appears in the data |
covariates |
A vector of the names of covariates as they appear in the data. Default NULL. |
model.family |
Either "gaussian" or "binomial" |
n.coh.excl.start |
If any cohorts have been censored (AP data only). Default 0. |
n.coh.excl.end |
If any cohorts have been censored (AP data only). Default 0. |
n.per.excl.start |
If any periods have been censored (AC data only). Default 0. |
n.per.excl.end |
If any periods have been censored (AC data only). Default 0. |
n.age.excl.start |
If any ages have been censored (PC data only). Default 0. |
n.age.excl.end |
If any ages have been censored (PC data only). Default 0. |
NR.controls |
Optional list to modify aspects of the Newton-Rhapson
iteration for binomial TS model. See details in |
test |
The type of test. One of "LR", "Wald". |
dist |
The distribution against which the test statistic is compared. One of "F", "Chisq". |
wt.var |
Only if using survey weights. The name of the weights variable. |
plmmodel |
Used to indicate whether a panel data model is to be estimated and if so what type. Default is "notplm", for not panel data. Other values are "pooling", "within", "random". Further details in |
id.var |
Only if using panel data. The name of the individual ID variable. |
existing.big.model.fit |
Optional specify the output of apc.indiv.fit.model, if already run for the big model. |
existing.small.model.fit |
Optional specify the output of apc.indiv.fit.model, if already run for the small model. |
existing.collinear |
Optional specify the output of apc.indiv.design.collinear, if already run. |
Details
These functions are designed to facilitate direct comparison between
sub-models. The functions are used to construct the rows of tables in
apc.indiv.model.table
but can also more helpfully be used to compare
nested sub-models that gain similar levels of suport from such a table, e.g.
PC to P.
Value
test.type |
The type of test, one of "LR", "Wald". |
dist.type |
The distribution against which the test statistic is compared. One of "F", "Chisq". |
test.stat |
The value of the test statistic. |
df |
Degrees of freedom. |
df.num |
Gaussian models only. Degrees of freedom used in the numerator of the F-statistic. |
df.denom |
Gaussian models only. Degrees of freedom used in the denominator of the F-statistic. |
p.value |
P-value from testing against a chi-square or F distribution. |
aic.big |
AIC of the big model. |
aic.small |
AIC of the small model. |
lik.big |
Log-likelihood of the big model. |
lik.small |
Log-likelihood of the small model. |
NR.report |
Binomial TS model only. Report on the Newton-Rhapson algorithm. |
Author(s)
Zoe Fannon <zoe.fannon@economics.ox.ac.uk> 26 Jun 2020
References
Fannon, Z. (2018) apc.indiv
: R tools to estimate age-period-cohort models with
repeated cross section data. Mimeo. University of Oxford.
Fannon, Z., Monden, C. and Nielsen, B. (2018) Age-period-cohort modelling and covariates, with an application to obesity in England 2001-2014. Mimeo. University of Oxford.
See Also
For model estimation: apc.indiv.est.model
.
The data in these examples are the
Wage
data from the package ISLR
and the
PSID7682
data from the package AER.
For examples, see the vignette
IntroductionIndividualData.pdf
,
IntroductionIndividualData.R
on
Vignettes
.
Further examples in the vignette
IntroductionIndividualDataFurtherExamples.pdf
,
IntroductionIndividualDataFurtherExamples.R
.
Examples
#### see vignettes