apa.ezANOVA.table {apaTables} | R Documentation |
Creates an ANOVA table in APA style based output of ezANOVA command from ez package
Description
Creates an ANOVA table in APA style based output of ezANOVA command from ez package
Usage
apa.ezANOVA.table(
ez.output,
correction = "GG",
table.title = "",
filename,
table.number = NA
)
Arguments
ez.output |
Output object from ezANOVA command from ez package |
correction |
Type of sphercity correction: "none", "GG", or "HF" corresponding to none, Greenhouse-Geisser and Huynh-Feldt, respectively. |
table.title |
String containing text for table title |
filename |
(optional) Output filename document filename (must end in .rtf or .doc only) |
table.number |
Integer to use in table number output line |
Value
APA table object
Examples
## Not run:
# ** Example 1: Between Participant Predictors
#
library(apaTables)
library(ez)
# See format where one row represents one PERSON
# Note that participant, gender, and alcohol are factors
print(goggles)
# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits
options(digits = 10)
goggles_results <- ezANOVA(data = goggles,
dv = attractiveness,
between = .(gender, alcohol),
participant ,
detailed = TRUE)
# Make APA table
goggles_table <- apa.ezANOVA.table(goggles_results,
filename="ex1_ez_independent.doc")
print(goggles_table)
#
# ** Example 2: Within Participant Predictors
#
library(apaTables)
library(tidyr)
library(forcats)
library(ez)
# See initial wide format where one row represents one PERSON
print(drink_attitude_wide)
# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.
drink_attitude_long <- gather(data = drink_attitude_wide,
key = cell, value = attitude,
beer_positive:water_neutral,
factor_key=TRUE)
drink_attitude_long <- separate(data = drink_attitude_long,
col = cell, into = c("drink","imagery"),
sep = "_", remove = TRUE)
drink_attitude_long$drink <- as_factor(drink_attitude_long$drink)
drink_attitude_long$imagery <- as_factor(drink_attitude_long$imagery)
# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (drink, imagery)
# drink, imagery, and participant are factors
print(drink_attitude_long)
# Set contrasts to match Field et al. (2012) textbook output
alcohol_vs_water <- c(1, 1, -2)
beer_vs_wine <- c(-1, 1, 0)
negative_vs_other <- c(1, -2, 1)
positive_vs_neutral <- c(-1, 0, 1)
contrasts(drink_attitude_long$drink) <- cbind(alcohol_vs_water, beer_vs_wine)
contrasts(drink_attitude_long$imagery) <- cbind(negative_vs_other, positive_vs_neutral)
# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits
options(digits = 10)
drink_attitude_results <- ezANOVA(data = drink_attitude_long,
dv = .(attitude), wid = .(participant),
within = .(drink, imagery),
type = 3, detailed = TRUE)
# Make APA table
drink_table <- apa.ezANOVA.table(drink_attitude_results,
filename="ex2_repeated_table.doc")
print(drink_table)
#
# ** Example 3: Between and Within Participant Predictors
#
library(apaTables)
library(tidyr)
library(forcats)
library(ez)
# See initial wide format where one row represents one PERSON
print(dating_wide)
# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.
dating_long <- gather(data = dating_wide,
key = cell, value = date_rating,
attractive_high:ugly_none,
factor_key = TRUE)
dating_long <- separate(data = dating_long,
col = cell, into = c("looks","personality"),
sep = "_", remove = TRUE)
dating_long$looks <- as_factor(dating_long$looks)
dating_long$personality <- as_factor(dating_long$personality)
# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (looks, personality)
# looks, personality, and participant are factors
print(dating_long)
# Set contrasts to match Field et al. (2012) textbook output
some_vs_none <- c(1, 1, -2)
hi_vs_av <- c(1, -1, 0)
attractive_vs_ugly <- c(1, 1, -2)
attractive_vs_average <- c(1, -1, 0)
contrasts(dating_long$personality) <- cbind(some_vs_none, hi_vs_av)
contrasts(dating_long$looks) <- cbind(attractive_vs_ugly, attractive_vs_average)
# Use ezANOVA
library(ez)
options(digits = 10)
dating_results <-ezANOVA(data = dating_long, dv = .(date_rating), wid = .(participant),
between = .(gender), within = .(looks, personality),
type = 3, detailed = TRUE)
# Make APA table
dating_table <- apa.ezANOVA.table(dating_results,
filename = "ex3_mixed_table.doc")
print(dating_table)
## End(Not run)
[Package apaTables version 2.0.8 Index]