orsf_pd_oob {aorsf} | R Documentation |
Partial dependence
Description
Compute partial dependence for an oblique random forest. Partial dependence (PD) shows the expected prediction from a model as a function of a single predictor or multiple predictors. The expectation is marginalized over the values of all other predictors, giving something like a multivariable adjusted estimate of the model's prediction. You can compute partial dependence three ways using a random forest:
using in-bag predictions for the training data
using out-of-bag predictions for the training data
using predictions for a new set of data
See examples for more details
Usage
orsf_pd_oob(
object,
pred_spec,
pred_horizon = NULL,
pred_type = NULL,
expand_grid = TRUE,
prob_values = c(0.025, 0.5, 0.975),
prob_labels = c("lwr", "medn", "upr"),
boundary_checks = TRUE,
n_thread = NULL,
verbose_progress = NULL,
...
)
orsf_pd_inb(
object,
pred_spec,
pred_horizon = NULL,
pred_type = NULL,
expand_grid = TRUE,
prob_values = c(0.025, 0.5, 0.975),
prob_labels = c("lwr", "medn", "upr"),
boundary_checks = TRUE,
n_thread = NULL,
verbose_progress = NULL,
...
)
orsf_pd_new(
object,
pred_spec,
new_data,
pred_horizon = NULL,
pred_type = NULL,
na_action = "fail",
expand_grid = TRUE,
prob_values = c(0.025, 0.5, 0.975),
prob_labels = c("lwr", "medn", "upr"),
boundary_checks = TRUE,
n_thread = NULL,
verbose_progress = NULL,
...
)
Arguments
object |
(ObliqueForest) a trained oblique random forest object (see orsf). |
pred_spec |
(named list, pspec_auto, or data.frame).
|
pred_horizon |
(double) Only relevent for survival forests.
A value or vector indicating the time(s) that predictions will be
calibrated to. E.g., if you were predicting risk of incident heart
failure within the next 10 years, then |
pred_type |
(character) the type of predictions to compute. Valid Valid options for survival are:
For classification:
For regression:
|
expand_grid |
(logical) if |
prob_values |
(numeric) a vector of values between 0 and 1,
indicating what quantiles will be used to summarize the partial
dependence values at each set of inputs. |
prob_labels |
(character) a vector of labels with the same length
as |
boundary_checks |
(logical) if |
n_thread |
(integer) number of threads to use while computing predictions. Default is 0, which allows a suitable number of threads to be used based on availability. |
verbose_progress |
(logical) if |
... |
Further arguments passed to or from other methods (not currently used). |
new_data |
a data.frame, tibble, or data.table to compute predictions in. |
na_action |
(character) what should happen when
|
Details
Partial dependence has a number of known limitations and assumptions that users should be aware of (see Hooker, 2021). In particular, partial dependence is less intuitive when >2 predictors are examined jointly, and it is assumed that the feature(s) for which the partial dependence is computed are not correlated with other features (this is likely not true in many cases). Accumulated local effect plots can be used (see here) in the case where feature independence is not a valid assumption.
Value
a data.table containing partial dependence values for the specified variable(s) and, if relevant, at the specified prediction horizon(s).
Examples
You can compute partial dependence and individual conditional expectations in three ways:
using in-bag predictions for the training data. In-bag partial dependence indicates relationships that the model has learned during training. This is helpful if your goal is to interpret the model.
using out-of-bag predictions for the training data. Out-of-bag partial dependence indicates relationships that the model has learned during training but using the out-of-bag data simulates application of the model to new data. This is helpful if you want to test your model’s reliability or fairness in new data but you don’t have access to a large testing set.
using predictions for a new set of data. New data partial dependence shows how the model predicts outcomes for observations it has not seen. This is helpful if you want to test your model’s reliability or fairness.
Classification
Begin by fitting an oblique classification random forest:
set.seed(329) index_train <- sample(nrow(penguins_orsf), 150) penguins_orsf_train <- penguins_orsf[index_train, ] penguins_orsf_test <- penguins_orsf[-index_train, ] fit_clsf <- orsf(data = penguins_orsf_train, formula = species ~ .)
Compute partial dependence using out-of-bag data for
flipper_length_mm = c(190, 210)
.
pred_spec <- list(flipper_length_mm = c(190, 210)) pd_oob <- orsf_pd_oob(fit_clsf, pred_spec = pred_spec) pd_oob
## Key: <class> ## class flipper_length_mm mean lwr medn upr ## <fctr> <num> <num> <num> <num> <num> ## 1: Adelie 190 0.6176908 0.202278109 0.75856417 0.9810614 ## 2: Adelie 210 0.4338528 0.019173811 0.56489202 0.8648110 ## 3: Chinstrap 190 0.2114979 0.017643385 0.15211271 0.7215181 ## 4: Chinstrap 210 0.1803019 0.020108201 0.09679464 0.7035053 ## 5: Gentoo 190 0.1708113 0.001334861 0.02769695 0.5750201 ## 6: Gentoo 210 0.3858453 0.068685035 0.20717073 0.9532853
Note that predicted probabilities are returned for each class and
probabilities in the mean
column sum to 1 if you take the sum over
each class at a specific value of the pred_spec
variables. For
example,
sum(pd_oob[flipper_length_mm == 190, mean])
## [1] 1
But this isn’t the case for the median predicted probability!
sum(pd_oob[flipper_length_mm == 190, medn])
## [1] 0.9383738
Regression
Begin by fitting an oblique regression random forest:
set.seed(329) index_train <- sample(nrow(penguins_orsf), 150) penguins_orsf_train <- penguins_orsf[index_train, ] penguins_orsf_test <- penguins_orsf[-index_train, ] fit_regr <- orsf(data = penguins_orsf_train, formula = bill_length_mm ~ .)
Compute partial dependence using new data for
flipper_length_mm = c(190, 210)
.
pred_spec <- list(flipper_length_mm = c(190, 210)) pd_new <- orsf_pd_new(fit_regr, pred_spec = pred_spec, new_data = penguins_orsf_test) pd_new
## flipper_length_mm mean lwr medn upr ## <num> <num> <num> <num> <num> ## 1: 190 42.96571 37.09805 43.69769 48.72301 ## 2: 210 45.66012 40.50693 46.31577 51.65163
You can also let pred_spec_auto
pick reasonable values like so:
pred_spec = pred_spec_auto(species, island, body_mass_g) pd_new <- orsf_pd_new(fit_regr, pred_spec = pred_spec, new_data = penguins_orsf_test) pd_new
## species island body_mass_g mean lwr medn upr ## <fctr> <fctr> <num> <num> <num> <num> <num> ## 1: Adelie Biscoe 3200 40.31374 37.24373 40.31967 44.22824 ## 2: Chinstrap Biscoe 3200 45.10582 42.63342 45.10859 47.60119 ## 3: Gentoo Biscoe 3200 42.81649 40.19221 42.55664 46.84035 ## 4: Adelie Dream 3200 40.16219 36.95895 40.34633 43.90681 ## 5: Chinstrap Dream 3200 46.21778 43.53954 45.90929 49.19173 ## --- ## 41: Chinstrap Dream 5300 48.48139 46.36282 48.25679 51.02996 ## 42: Gentoo Dream 5300 45.91819 43.62832 45.54110 49.91622 ## 43: Adelie Torgersen 5300 42.92879 40.66576 42.31072 46.76406 ## 44: Chinstrap Torgersen 5300 46.59576 44.80400 46.49196 49.03906 ## 45: Gentoo Torgersen 5300 45.11384 42.95190 44.51289 49.27629
By default, all combinations of all variables are used. However, you can also look at the variables one by one, separately, like so:
pd_new <- orsf_pd_new(fit_regr, expand_grid = FALSE, pred_spec = pred_spec, new_data = penguins_orsf_test) pd_new
## variable value level mean lwr medn upr ## <char> <num> <char> <num> <num> <num> <num> ## 1: species NA Adelie 41.90271 37.10417 41.51723 48.51478 ## 2: species NA Chinstrap 47.11314 42.40419 46.96478 51.51392 ## 3: species NA Gentoo 44.37038 39.87306 43.89889 51.21635 ## 4: island NA Biscoe 44.21332 37.22711 45.27862 51.21635 ## 5: island NA Dream 44.43354 37.01471 45.57261 51.51392 ## 6: island NA Torgersen 43.29539 37.01513 44.26924 49.84391 ## 7: body_mass_g 3200 <NA> 42.84625 37.03978 43.95991 49.19173 ## 8: body_mass_g 3550 <NA> 43.53326 37.56730 44.43756 50.47092 ## 9: body_mass_g 3975 <NA> 44.30431 38.31567 45.22089 51.50683 ## 10: body_mass_g 4700 <NA> 45.22559 39.88199 46.34680 51.18955 ## 11: body_mass_g 5300 <NA> 45.91412 40.84742 46.95327 51.48851
And you can also bypass all the bells and whistles by using your own
data.frame
for a pred_spec
. (Just make sure you request values that
exist in the training data.)
custom_pred_spec <- data.frame(species = 'Adelie', island = 'Biscoe') pd_new <- orsf_pd_new(fit_regr, pred_spec = custom_pred_spec, new_data = penguins_orsf_test) pd_new
## species island mean lwr medn upr ## <fctr> <fctr> <num> <num> <num> <num> ## 1: Adelie Biscoe 41.98024 37.22711 41.65252 48.51478
Survival
Begin by fitting an oblique survival random forest:
set.seed(329) index_train <- sample(nrow(pbc_orsf), 150) pbc_orsf_train <- pbc_orsf[index_train, ] pbc_orsf_test <- pbc_orsf[-index_train, ] fit_surv <- orsf(data = pbc_orsf_train, formula = Surv(time, status) ~ . - id, oobag_pred_horizon = 365.25 * 5)
Compute partial dependence using in-bag data for bili = c(1,2,3,4,5)
:
pd_train <- orsf_pd_inb(fit_surv, pred_spec = list(bili = 1:5)) pd_train
## pred_horizon bili mean lwr medn upr ## <num> <num> <num> <num> <num> <num> ## 1: 1826.25 1 0.2566200 0.02234786 0.1334170 0.8918909 ## 2: 1826.25 2 0.3121392 0.06853733 0.1896849 0.9204338 ## 3: 1826.25 3 0.3703242 0.11409793 0.2578505 0.9416791 ## 4: 1826.25 4 0.4240692 0.15645214 0.3331057 0.9591581 ## 5: 1826.25 5 0.4663670 0.20123406 0.3841700 0.9655296
If you don’t have specific values of a variable in mind, let
pred_spec_auto
pick for you:
pd_train <- orsf_pd_inb(fit_surv, pred_spec_auto(bili)) pd_train
## pred_horizon bili mean lwr medn upr ## <num> <num> <num> <num> <num> <num> ## 1: 1826.25 0.55 0.2481444 0.02035041 0.1242215 0.8801444 ## 2: 1826.25 0.70 0.2502831 0.02045039 0.1271039 0.8836536 ## 3: 1826.25 1.50 0.2797763 0.03964900 0.1601715 0.9041584 ## 4: 1826.25 3.50 0.3959349 0.13431288 0.2920400 0.9501230 ## 5: 1826.25 7.25 0.5351935 0.28064629 0.4652185 0.9783000
Specify pred_horizon
to get partial dependence at each value:
pd_train <- orsf_pd_inb(fit_surv, pred_spec_auto(bili), pred_horizon = seq(500, 3000, by = 500)) pd_train
## pred_horizon bili mean lwr medn upr ## <num> <num> <num> <num> <num> <num> ## 1: 500 0.55 0.0617199 0.000443399 0.00865419 0.5907104 ## 2: 1000 0.55 0.1418501 0.005793742 0.05572853 0.7360749 ## 3: 1500 0.55 0.2082505 0.013609478 0.09174558 0.8556319 ## 4: 2000 0.55 0.2679017 0.023047689 0.14574169 0.8910549 ## 5: 2500 0.55 0.3179617 0.063797305 0.20254500 0.9017710 ## --- ## 26: 1000 7.25 0.3264627 0.135343689 0.25956791 0.8884333 ## 27: 1500 7.25 0.4641265 0.218208755 0.38787435 0.9702903 ## 28: 2000 7.25 0.5511761 0.293367409 0.48427730 0.9812413 ## 29: 2500 7.25 0.6200238 0.371965247 0.56954399 0.9845058 ## 30: 3000 7.25 0.6803482 0.425128031 0.64642318 0.9888637
vector-valued pred_horizon
input comes with minimal extra
computational cost. Use a fine grid of time values and assess whether
predictors have time-varying effects. (see partial dependence vignette
for example)
References
Hooker, Giles, Mentch, Lucas, Zhou, Siyu (2021). "Unrestricted permutation forces extrapolation: variable importance requires at least one more model, or there is no free variable importance." Statistics and Computing, 31, 1-16.