| read_grid {aopdata} | R Documentation |
Download spatial hexagonal grid H3
Description
Results of the AOP project are spatially aggregated on a H3 spatial grid at resolution 9, with a side of 174 meters and an area of 0.10 km2. More information about H3 at https://h3geo.org/docs/core-library/restable/. See the documentation 'Details' for the data dictionary.
Usage
read_grid(city = NULL, showProgress = FALSE)
Arguments
city |
Character. A city name or three-letter abbreviation. If
|
showProgress |
Logical. Defaults to |
Value
An sf data.frame object
Data dictionary:
| Data type | column | Description |
| geographic | id_hex | Unique id of hexagonal cell |
| geographic | abbrev_muni | Abbreviation of city name (3 letters) |
| geographic | name_muni | City name |
| geographic | code_muni | 7-digit code of each city |
Cities available
| City name | Three-letter abbreviation |
| Belem | bel |
| Belo Horizonte | bho |
| Brasilia | bsb |
| Campinas | cam |
| Campo Grande | cgr |
| Curitiba | cur |
| Duque de Caxias | duq |
| Fortaleza | for |
| Goiania | goi |
| Guarulhos | gua |
| Maceio | mac |
| Manaus | man |
| Natal | nat |
| Porto Alegre | poa |
| Recife | rec |
| Rio de Janeiro | rio |
| Salvador | sal |
| Sao Goncalo | sgo |
| Sao Luis | slz |
| Sao Paulo | spo |
Examples
# Read spatial grid of a single city
nat <- read_grid(city = 'Natal', showProgress = FALSE)
# Read spatial grid of all cities in the project
# all <- read_grid(city = 'all', showProgress = FALSE)
[Package aopdata version 1.0.3 Index]