betabin {aod} | R Documentation |
Beta-Binomial Model for Proportions
Description
Fits a beta-binomial generalized linear model accounting for overdispersion in clustered binomial data (n, y)
.
Usage
betabin(formula, random, data, link = c("logit", "cloglog"), phi.ini = NULL,
warnings = FALSE, na.action = na.omit, fixpar = list(),
hessian = TRUE, control = list(maxit = 2000), ...)
Arguments
formula |
A formula for the fixed effects |
random |
A right-hand formula for the overdispersion parameter(s) |
link |
The link function for the mean |
data |
A data frame containing the response ( |
phi.ini |
Initial values for the overdispersion parameter(s) |
warnings |
Logical to control the printing of warnings occurring during log-likelihood maximization.
Default to |
na.action |
A function name: which action should be taken in the case of missing value(s). |
fixpar |
A list with 2 components (scalars or vectors) of the same size, indicating which parameters are
fixed (i.e., not optimized) in the global parameter vector |
hessian |
A logical. When set to |
control |
A list to control the optimization parameters. See |
... |
Further arguments passed to |
Details
For a given cluster (n, y)
, the model is:
y~|~\lambda \sim Binomial(n,~\lambda)
with \lambda
following a Beta distribution Beta(a1,~a2)
.
If B
denotes the beta function, then:
P(\lambda) = \frac{\lambda^{a1~-~1} * (1~-~\lambda)^{a2 - 1}}{B(a1,~a2)}
E[\lambda] = \frac{a1}{a1 + a2}
Var[\lambda] = \frac{a1 * a2}{(a1 + a2 + 1) * (a1 + a2)^2}
The marginal beta-binomial distribution is:
P(y) = \frac{C(n,~y) * B(a1 + y, a2 + n - y)}{B(a1,~a2)}
The function uses the parameterization p = \frac{a1}{a1 + a2} = h(X b) = h(\eta)
and \phi = \frac{1}{a1 + a2 + 1}
,
where h
is the inverse of the link function (logit or complementary log-log), X
is a design-matrix, b
is a vector of fixed effects, \eta = X b
is the linear predictor and \phi
is the overdispersion
parameter (i.e., the intracluster correlation coefficient, which is here restricted to be positive).
The marginal mean and variance are:
E[y] = n * p
Var[y] = n * p * (1 - p) * [1 + (n - 1) * \phi]
The parameters b
and \phi
are estimated by maximizing the log-likelihood of the marginal model (using the
function optim
). Several explanatory variables are allowed in b
, only one in \phi
.
Value
An object of formal class “glimML”: see glimML-class
for details.
Author(s)
Matthieu Lesnoff matthieu.lesnoff@cirad.fr, Renaud Lancelot renaud.lancelot@cirad.fr
References
Crowder, M.J., 1978. Beta-binomial anova for proportions. Appl. Statist. 27, 34-37.
Griffiths, D.A., 1973. Maximum likelihood estimation for the beta-binomial distribution and an application
to the household distribution of the total number of cases of disease. Biometrics 29, 637-648.
Prentice, R.L., 1986. Binary regression using an extended beta-binomial distribution, with discussion of
correlation induced by covariate measurement errors. J.A.S.A. 81, 321-327.
Williams, D.A., 1975. The analysis of binary responses from toxicological experiments involving
reproduction and teratogenicity. Biometrics 31, 949-952.
See Also
glimML-class
, glm
and optim
Examples
data(orob2)
fm1 <- betabin(cbind(y, n - y) ~ seed, ~ 1, data = orob2)
fm2 <- betabin(cbind(y, n - y) ~ seed + root, ~ 1, data = orob2)
fm3 <- betabin(cbind(y, n - y) ~ seed * root, ~ 1, data = orob2)
# show the model
fm1; fm2; fm3
# AIC
AIC(fm1, fm2, fm3)
summary(AIC(fm1, fm2, fm3), which = "AICc")
# Wald test for root effect
wald.test(b = coef(fm3), Sigma = vcov(fm3), Terms = 3:4)
# likelihood ratio test for root effect
anova(fm1, fm3)
# model predictions
New <- expand.grid(seed = levels(orob2$seed),
root = levels(orob2$root))
data.frame(New, predict(fm3, New, se = TRUE, type = "response"))
# Djallonke sheep data
data(dja)
betabin(cbind(y, n - y) ~ group, ~ 1, dja)
# heterogeneous phi
betabin(cbind(y, n - y) ~ group, ~ group, dja,
control = list(maxit = 1000))
# phi fixed to zero in group TREAT
betabin(cbind(y, n - y) ~ group, ~ group, dja,
fixpar = list(4, 0))
# glim without overdispersion
summary(glm(cbind(y, n - y) ~ group,
family = binomial, data = dja))
# phi fixed to zero in both groups
betabin(cbind(y, n - y) ~ group, ~ group, dja,
fixpar = list(c(3, 4), c(0, 0)))