spectralClustering {anocva} | R Documentation |
Spectral clustering
Description
Unnormalized spectral clustering function. Uses Partitioning Around Medoids clustering instead of K-means.
Usage
spectralClustering(W, k)
Arguments
W |
NxN similarity matrix |
k |
Number of clusters |
Value
Cluster labels
References
Von Luxburg, U (2007) A tutorial on spectral clustering. Statistics and computing 17:395–416.
Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems. Dietterich T, Becker S, Ghahramani Z (Eds.), vol. 14. MIT Press, (pp. 849–856).
Examples
# Install igraph if necessary
# install.packages('igraph')
# install.packages('cluster')
library(anocva)
set.seed(2000)
if (requireNamespace("igraph", quietly = TRUE)) {
# Create a tree graph
treeGraph = igraph::make_tree(80, children = 4, mode = "undirected")
# Visualize the tree graph
plot(treeGraph, vertex.size = 10, vertex.label = NA)
# Get the adjacency matrix of the tree graph
adj = as.matrix(igraph::get.adjacency(treeGraph))
# Cluster the tree graph in to four clusters
cluster = spectralClustering(adj, 4)
# See the result clustering
plot(treeGraph, vertex.size=10, vertex.color = cluster, vertex.label = NA)
}
[Package anocva version 0.1.1 Index]