hr_akde {amt} | R Documentation |
Home ranges
Description
Functions to calculate animal home ranges from a track_xy*
. hr_mcp
, hr_kde
, and hr_locoh
calculate the minimum convex
polygon, kernel density, and local convex hull home range respectively.
Usage
hr_akde(x, ...)
## S3 method for class 'track_xyt'
hr_akde(
x,
model = fit_ctmm(x, "iid"),
keep.data = TRUE,
trast = make_trast(x),
levels = 0.95,
wrap = FALSE,
...
)
hr_kde(x, ...)
## S3 method for class 'track_xy'
hr_kde(
x,
h = hr_kde_ref(x),
trast = make_trast(x),
levels = 0.95,
keep.data = TRUE,
wrap = FALSE,
...
)
hr_locoh(x, ...)
## S3 method for class 'track_xy'
hr_locoh(
x,
n = 10,
type = "k",
levels = 0.95,
keep.data = TRUE,
rand_buffer = 1e-05,
...
)
hr_mcp(x, ...)
hr_od(x, ...)
Arguments
x |
|
... |
Further arguments, none implemented. |
model |
A continuous time movement model. This can be fitted either with |
keep.data |
|
trast |
|
levels |
|
wrap |
|
h |
|
n |
|
type |
|
rand_buffer |
|
Value
A hr
-estimate.
References
Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70(1), 164-168. C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, J. M. Calabrese, “Rigorous home-range estimation with movement data: A new autocorrelated kernel-density estimator”, Ecology, 96:5, 1182-1188 (2015).
Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., & Calabrese, J. M. (2016). Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology, 97(3), 576-582.
Examples
data(deer)
mini_deer <- deer[1:100, ]
# MCP ---------------------------------------------------------------------
mcp1 <- hr_mcp(mini_deer)
hr_area(mcp1)
# calculated MCP at different levels
mcp1 <- hr_mcp(mini_deer, levels = seq(0.3, 1, 0.1))
hr_area(mcp1)
# CRS are inherited
get_crs(mini_deer)
mcps <- hr_mcp(mini_deer, levels = c(0.5, 0.95, 1))
has_crs(mcps)
# Kernel density estimaiton (KDE) -----------------------------------------
kde1 <- hr_kde(mini_deer)
hr_area(kde1)
get_crs(kde1)
# akde
data(deer)
mini_deer <- deer[1:20, ]
ud1 <- hr_akde(mini_deer) # uses an iid ctmm
ud2 <- hr_akde(mini_deer, model = fit_ctmm(deer, "ou")) # uses an OU ctmm
# od
data(deer)
ud1 <- hr_od(deer) # uses an iid ctmm
ud2 <- hr_akde(deer, model = fit_ctmm(deer, "ou")) # uses an OU ctmm