diagnosis.ammiBayes {ammiBayes} | R Documentation |
Bayesian AMMI for ordinal data
Description
Extract the MCMC chain for diagnosis
Usage
diagnosis.ammiBayes(x, pars=NULL)
Arguments
x |
An object of class ammiBayes |
pars |
It should be set, such as "Genotype", "Rep", "L", "Gen.PC1", "Gen.PC2", "Env.PC1", "Env.PC2", "Comp.var". See details |
Details
The output is compatible for diagnosis with the coda
and bayesplot
packages.
Examples can be seen on the website: bayesplot
Author(s)
Luciano A. Oliveira
Carlos P. Silva
Cristian T. E. Mendes
Alessandra Q. Silva
Joel J. Nuvunga
Marcio Balestre
Julio S. S. Bueno-Filho
Fabio M. Correa
References
OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369
SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.
Examples
# Not run
library(ammiBayes)
library(bayesplot)
library(ggpubr)
data(ammiData)
Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod
model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=1000, burn=10, jump=2, chains=2)
gen.diagnosis <- diagnosis.ammiBayes(model, pars="Genotype")
mcmc_trace(gen.diagnosis)
mcmc_dens_overlay(gen.diagnosis)
mcmc_areas(gen.diagnosis)
dens <- bayesplot::mcmc_dens_overlay(gen.diagnosis)
trac <- bayesplot::mcmc_trace(gen.diagnosis, facet_args=list(ncol=1))
ggpubr::ggarrange(trac,dens, common.legend=TRUE)