ammiBayes.mean.plot {ammiBayes} | R Documentation |
Plot ammiBayes object
Description
Plot the means for the ammiBayes object
Usage
ammiBayes.mean.plot(model, pars.gen=NULL, pars.env=NULL,
gen.labels=NULL, env.labels=NULL,
col.text.gen="darkgreen", col.text.env="red",
ylim=NULL, xlim=NULL, cex.env=1, cex.gen=1,
xlab, ylab, col.grid="grey", lty.grid=2, lwd.grid=1)
Arguments
model |
An object of the ammiBayes class |
pars.gen |
An optional character vector of genotype names. If pars is omitted all genotypes are included. |
pars.env |
An optional character vector of environment names. If pars is omitted all environments are included. |
gen.labels |
Optional vector for the name of the genotypes |
env.labels |
Optional vector for the name of the environments |
col.text.gen |
Define the color of genotype names |
col.text.env |
Define the color of environment names |
ylim |
Define the limites applied to the y-axis |
xlim |
Define the limites applied to the x-axis |
cex.env |
Scale for the font size of the environment names. Default is 1 |
cex.gen |
Scale for the font size of the genotype names. Default is 1 |
xlab |
Label for the x-axis |
ylab |
Label for the y-axis |
col.grid |
Define the color for the grid. Default is "grey" |
lty.grid |
Line type of grid |
lwd.grid |
Line width of grid |
Author(s)
Luciano A. Oliveira
Carlos P. Silva
Cristian T. E. Mendes
Alessandra Q. Silva
Joel J. Nuvunga
Marcio Balestre
Julio S. S. Bueno-Filho
Fabio M. Correa
References
OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369
SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.
See Also
Examples
library(ammiBayes)
data(ammiData)
Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod
model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)
ammiBayes.mean.plot(model)