sim_weighted_trawl {ambit} | R Documentation |
Simulation of a weighted trawl process
Description
This function simulates a weighted trawl process for various choices of the trawl function and the marginal distribution.
Usage
sim_weighted_trawl(
n,
Delta,
trawlfct,
trawlfct_par,
distr,
distr_par,
kernelfct = NULL
)
Arguments
n |
number of grid points to be simulated (excluding the starting value) |
Delta |
grid-width |
trawlfct |
the trawl function a used in the simulation (Exp, supIG or LM) |
trawlfct_par |
parameter vector of trawl function (Exp: lambda, supIG: delta, gamma, LM: alpha, H) |
distr |
marginal distribution. Choose from "Gamma" (Gamma), "Gauss" (Gaussian), "Cauchy" (Cauchy), "NIG" (Normal Inverse Gaussian), Poi" (Poisson), "NegBin" (Negative Binomial) |
distr_par |
parameters of the marginal distribution: (Gamma: shape, scale; Gauss: mu, sigma (i.e. the second parameter is the standard deviation, not the variance); Cauchy: l, s; NIG: alpha, beta, delta, mu; Poi: v, NegBin: m, theta) |
kernelfct |
the kernel function p used in the ambit process |
Details
This functions simulates a sample path from a weighted trawl process given by
Y_t =\int_{(-\infty,t]\times (-\infty, \infty)}
p(t-s)I_{(0,a(t-s))}(x)L(dx,ds),
for t \ge 0
,
and returns Y_0, Y_{\Delta}, \ldots, Y_{n\Delta}
.
Value
path Simulated path
slice_sizes slice sizes used
S_matrix Matrix of all slices
kernelweights kernel weights used
Examples
#Simulation of a Gaussian trawl process with exponential trawl function
n<-2000
Delta<-0.1
trawlfct="Exp"
trawlfct_par <-0.5
distr<-"Gauss"
distr_par<-c(0,1) #mean 0, std 1
set.seed(233)
path <- sim_weighted_trawl(n, Delta, trawlfct, trawlfct_par, distr, distr_par)$path
#Plot the path
library(ggplot2)
df <- data.frame(time = seq(0,n,1), value=path)
p <- ggplot(df, aes(x=time, y=path))+
geom_line()+
xlab("l")+
ylab("Trawl process")
p