rq {ambit} | R Documentation |
Computing the scaled realised quarticity
Description
This function computes the scaled realised quarticity of a time series for a given width of the observation grid.
Usage
rq(data, Delta)
Arguments
data |
The data set used to compute the scaled realised quarticity |
Delta |
The width Delta of the observation grid |
Details
According to
Sauri and Veraart (2022), the scaled realised quarticity for
X_0, X_{\Delta_n}, \ldots, X_{(n-1)\Delta_n}
is given by
RQ_n:=\frac{1}{\sqrt{2 n\Delta_{n}}}
\sum_{k=0}^{n-2}(X_{(k+1)\Delta_n}-X_{k\Delta_n})^4.
Value
The function returns the scaled realised quarticity RQ_n.
Examples
##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta
###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1
#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path
#Compute the scaled realised quarticity
rq(Poi_data, my_delta)
[Package ambit version 0.1.2 Index]