asymptotic_variance_est {ambit} | R Documentation |
Estimating the asymptotic variance in the trawl function CLT
Description
This function estimates the asymptotic variance which appears in the CLT for the trawl function estimation.
Usage
asymptotic_variance_est(t, c4, varlevyseed = 1, Delta, avector, N = NULL)
Arguments
t |
The time point at which to compute the asymptotic variance |
c4 |
The fourth cumulant of the Levy seed of the trawl process |
varlevyseed |
The variance of the Levy seed of the trawl process, the default is 1 |
Delta |
The width Delta of the observation grid |
avector |
The vector |
N |
The optional parameter to specify the upper bound |
Details
As derived in Sauri and Veraart (2022), the estimated asymptotic variance is given by
\hat \sigma^2_a(t)=\hat v_1(t)+\hat v_2(t)+\hat v_3(t)+\hat v_4(t),
where
\hat{v}_{1}(t):=\widehat{c_{4}(L')}\hat{a}(t)=RQ_n\hat{a}(t)/
\hat{a}(0),
for
RQ_n:=\frac{1}{\sqrt{2 n\Delta_{n}}}
\sum_{k=0}^{n-2}(X_{(k+1)\Delta_n}-X_{k\Delta_n})^4,
and
\hat{v}_{2}(t):=2\sum_{l=0}^{N_{n}}\hat{a}^{2}(l\Delta_{n})
\Delta_{n},
\hat{v}_{3}(t):=2\sum_{l=0}^{\min\{i,n-1-i\}}\hat{a}((i-l)\Delta_{n})
\hat{a}((i+l)\Delta_{n})\Delta_{n},
\hat{v}_{4}(t):=-2\sum_{l=i}^{N_{n}-i}\hat{a}((l-i)\Delta_{n})
\hat{a}((i+l)\Delta_{n})\Delta_{n}.
Value
The estimated asymptotic variance \hat v=\hat \sigma_a^2(t)
and its components \hat v_1, \hat v_2, \hat v_3, \hat v_4
.
Examples
##Simulate a trawl process
##Determine the sampling grid
my_n <- 1000
my_delta <- 0.1
my_t <- my_n*my_delta
###Choose the model parameter
#Exponential trawl function:
my_lambda <- 2
#Poisson marginal distribution trawl
my_v <- 1
#Set the seed
set.seed(123)
#Simulate the trawl process
Poi_data <- sim_weighted_trawl(my_n, my_delta,
"Exp", my_lambda, "Poi", my_v)$path
#Estimate the trawl function
my_lag <- 100+1
trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat
#Estimate the fourth cumulant of the trawl process
c4_est <- c4est(Poi_data, my_delta)
asymptotic_variance_est(t=1, c4=c4_est, varlevyseed=1,
Delta=my_delta, avector=trawl)$v