asymptotic_variance {ambit} | R Documentation |
Computing the true asymptotic variance in the CLT of the trawl estimation
Description
This function computes the theoretical asymptotic variance appearing in the CLT of the trawl process for a given trawl function and fourth cumulant.
Usage
asymptotic_variance(t, c4, varlevyseed = 1, trawlfct, trawlfct_par)
Arguments
t |
Time point at which the asymptotic variance is computed |
c4 |
The fourth cumulant of the Levy seed of the trawl process |
varlevyseed |
The variance of the Levy seed of the trawl process, the default is 1 |
trawlfct |
The trawl function for which the asymptotic variance will be computed (Exp, supIG or LM) |
trawlfct_par |
The parameter vector of the trawl function (Exp: lambda, supIG: delta, gamma, LM: alpha, H) |
Details
As derived in Sauri and Veraart (2022), the asymptotic variance in the central limit theorem for the trawl function estimation is given by
\sigma_{a}^{2}(t)=c_{4}(L')a(t)+2\{ \int_{0}^{\infty}a(s)^{2}ds+
\int_{0}^{t}a(t-s)a(t+s)ds-\int_{t}^{\infty}a(s-t)a(t+s)ds\},
for t>0
.
The integrals in the above formula are approximated numerically.
Value
The function returns \sigma_{a}^{2}(t)
.
Examples
#Compute the asymptotic variance at time t for an exponential trawl with
#parameter 2; here we assume that the fourth cumulant equals 1.
av<-asymptotic_variance(t=1, c4=1, varlevyseed=1, trawlfct="Exp", trawlfct_par=2)
#Print the av
av$v
#Print the four components of the asymptotic variance separately
av$v1
av$v2
av$v3
av$v4
#Note that v=v1+v2+v3+v4
av$v
av$v1+av$v2+av$v3+av$v4