VarRob {amap} | R Documentation |
Robust variance
Description
Compute a robust variance
Usage
varrob(x,h,D=NULL,kernel="gaussien")
Arguments
x |
Matrix / data frame |
h |
Scalar: bandwidth of the Kernel |
kernel |
The kernel used. This must be one of '"gaussien"', '"quartic"', '"triweight"', '"epanechikov"' , '"cosinus"' or '"uniform"' |
D |
A product scalar matrix / une matrice de produit scalaire |
Details
U
compute robust variance. U_n^{-1} = S_n^{-1} - 1/h V_n^{-1}
S_n=\frac{\sum_{i=1}^{n}K(||X_i||_{V_n^{-1}}/h)(X_i-\mu_n)(X_i-\mu_n)'}{\sum_{i=1}^nK(||X_i||_{V_n^{-1}}/h)}
with \mu_n
estimator of the mean.
K
compute a kernel.
Value
A matrix
Author(s)
Antoine Lucas
References
H. Caussinus, S. Hakam, A. Ruiz-Gazen Projections revelatrices controlees: groupements et structures diverses. 2002, to appear in Rev. Statist. Appli.
See Also
[Package amap version 0.8-19 Index]