ufitstab.skew {alphastable} | R Documentation |
ufitstab.skew
Description
using the EM algorithm, it estimates the parameters of skew stable distribution.
Usage
ufitstab.skew(y, alpha0, beta0, sigma0, mu0, param)
Arguments
y |
vector of observations |
alpha0 |
initial value of tail index parameter to start the EM algorithm |
beta0 |
initial value of skewness parameter to start the EM algorithm |
sigma0 |
initial value of scale parameter to start the EM algorithm |
mu0 |
initial value of location parameter to start the EM algorithm |
param |
kind of parameterization; must be 0 or 1 for |
Details
For any skew stable distribution we give a new representation by the following. Suppose Y~ S_{0}(alpha, beta, sigma, mu), P~ S_{1}(alpha/2,1,(cos(pi*alpha/4))^(2/alpha),0)
, and V~ S_{1}(alpha,1,1,0)
. Then, Y=eta*(2P)^(1/2)*N+theta*V+ mu-lambda
, where eta=sigma*(1-|beta|)^(1/alpha)
, theta=sigma*sign(beta)*|beta|^(1/alpha)
, lambda=sigma*beta*tan(pi*alpha/2)
, and N~N(0,1)
follows a skew stable distribution. All random variables N
, P
, and V
are mutually independent.
Value
alpha |
estimated value of the tail index parameter |
beta |
estimated value of the skewness parameter |
sigma |
estimated value of the scale parameter |
mu |
estimated value of the location parameter |
Note
Daily price returns of Abbey National shares between 31/7/91 and 8/10/91 (including n=50
business days). By assuming that p_{t}
denotes the price at t
-th day, the price return at t
-th day is defined as (p_{t-1}-p_{t})/p_{t-1}
; for t=2,...,n
, see Buckle (1995). We note that the EM algorithm is robust with respect to the initial values.
Author(s)
Mahdi Teimouri, Adel Mohammadpour, and Saralees Nadarajah
References
Buckle, D. J. (1995). Bayesian inference for stable distributions, Journal of the American Statistical Association, 90(430), 605-613.
Examples
# For example, We use the daily price returns of Abbey National shares. Using the initial
# values as alpha_{0}=0.8, beta_{0}=0, sigma_{0}=0.25, and mu_{0}=0.25.
price<-c(296,296,300,302,300,304,303,299,293,294,294,293,295,287,288,297,
305,307,304,303,304,304,309,309,309,307,306,304,300,296,301,298,
295,295,293,292,307,297,294,293,306,303,301,303,308,305,302,301,
297,299)
x<-c()
n<-length(price)
for(i in 2:n){x[i]<-(price[i-1]-price[i])/price[i-1]}
library("stabledist")
ufitstab.skew(x[2:n],0.8,0,0.25,0.25,1)