aout.mvnorm {alphaOutlier} | R Documentation |
Find \alpha
-outliers in multivariate normal data
Description
Given the parameters of a multivariate normal distribution, aout.mvnorm
identifies \alpha
-outliers in a given data set.
Usage
aout.mvnorm(data, param, alpha = 0.1, hide.outliers = FALSE)
Arguments
data |
a data.frame or matrix. The data set to be examined. |
param |
a list. Contains the parameters of the normal distribution: the mean vector |
alpha |
an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to 0.1. |
hide.outliers |
boolean. Returns the outlier-free data if set to |
Value
Data frame of the input data and an index named is.outlier
that flags the outliers with TRUE
. If hide.outliers is set to TRUE
, a data frame of the outlier-free data.
Author(s)
A. Rehage
References
Kuhnt, S.; Rehage, A. (2013) The concept of \alpha
-outliers in structured data situations. In C. Becker, R. Fried, S. Kuhnt (Eds.): Robustness and Complex Data Structures. Festschrift in Honour of Ursula Gather. Berlin: Springer, 91-108.
See Also
Examples
temp <- iris[1:51,-5]
temp.xq <- apply(FUN = median, MARGIN = 2, temp)
aout.mvnorm(as.matrix(temp), param = list(temp.xq, cov(temp)), alpha = 0.001)