aout.laplace {alphaOutlier} | R Documentation |
Find \alpha
-outliers in Laplace / double exponential data
Description
Given the parameters of a Laplace distribution, aout.laplace
identifies \alpha
-outliers in a given data set.
Usage
aout.laplace(data, param, alpha = 0.1, hide.outliers = FALSE)
Arguments
data |
a vector. The data set to be examined. |
param |
a vector. Contains the parameters of the Laplace distribution: |
alpha |
an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to 0.1. |
hide.outliers |
boolean. Returns the outlier-free data if set to |
Value
Data frame of the input data and an index named is.outlier
that flags the outliers with TRUE
. If hide.outliers is set to TRUE
, a simple vector of the outlier-free data.
Author(s)
A. Rehage
References
Dumonceaux, R.; Antle, C. E. (1973) Discrimination between the log-normal and the Weibull distributions. Technometrics, 15 (4), 923-926.
Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): Industrial Mathematics and Statistics. New Delhi: Narosa Publishing House, 545-585.
Examples
# Using the flood data from Dumonceaux and Antle (1973):
temp <- c(0.265, 0.269, 0.297, 0.315, 0.3225, 0.338, 0.379, 0.380, 0.392, 0.402,
0.412, 0.416, 0.418, 0.423, 0.449, 0.484, 0.494, 0.613, 0.654, 0.74)
aout.laplace(temp, c(median(temp), median(abs(temp - median(temp)))), 0.05)