| aout.chisq {alphaOutlier} | R Documentation |
Find \alpha-outliers in \chi^2 data
Description
Given the parameters of a \chi^2 distribution, aout.chisq identifies \alpha-outliers in a given data set.
Usage
aout.chisq(data, param, alpha = 0.1, hide.outliers = FALSE, ncp = 0, lower = auto.l,
upper = auto.u, method.in = "Newton", global.in = "gline",
control.in = list(sigma = 0.1, maxit = 1000, xtol = 1e-12,
ftol = 1e-12, btol = 1e-04))
Arguments
data |
a vector. The data set to be examined. |
param |
an atomic vector. Contains the degrees of freedom of the |
alpha |
an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to |
hide.outliers |
boolean. Returns the outlier-free data if set to |
ncp |
an atomic vector. Determines the non-centrality parameter of the |
lower |
an atomic vector. First element of |
upper |
an atomic vector. Second element of |
method.in |
See |
global.in |
See |
control.in |
See |
Details
The \alpha-outlier region of a \chi^2 distribution is generally not available in closed form or via the tails, such that a non-linear equation system has to be solved.
Value
Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.
Author(s)
A. Rehage
See Also
Examples
aout.chisq(chisq.test(occupationalStatus)$statistic, 49)