aout.chisq {alphaOutlier} | R Documentation |
Find \alpha
-outliers in \chi^2
data
Description
Given the parameters of a \chi^2
distribution, aout.chisq
identifies \alpha
-outliers in a given data set.
Usage
aout.chisq(data, param, alpha = 0.1, hide.outliers = FALSE, ncp = 0, lower = auto.l,
upper = auto.u, method.in = "Newton", global.in = "gline",
control.in = list(sigma = 0.1, maxit = 1000, xtol = 1e-12,
ftol = 1e-12, btol = 1e-04))
Arguments
data |
a vector. The data set to be examined. |
param |
an atomic vector. Contains the degrees of freedom of the |
alpha |
an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to |
hide.outliers |
boolean. Returns the outlier-free data if set to |
ncp |
an atomic vector. Determines the non-centrality parameter of the |
lower |
an atomic vector. First element of |
upper |
an atomic vector. Second element of |
method.in |
See |
global.in |
See |
control.in |
See |
Details
The \alpha
-outlier region of a \chi^2
distribution is generally not available in closed form or via the tails, such that a non-linear equation system has to be solved.
Value
Data frame of the input data and an index named is.outlier
that flags the outliers with TRUE
. If hide.outliers is set to TRUE
, a simple vector of the outlier-free data.
Author(s)
A. Rehage
See Also
Examples
aout.chisq(chisq.test(occupationalStatus)$statistic, 49)