phyto_ts_aggregate {algaeClassify} | R Documentation |
Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.
Description
Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.
Usage
phyto_ts_aggregate(
phyto.data,
DateVar = "date_dd_mm_yy",
SummaryType = c("abundance", "presence.absence"),
AbundanceVar = "biovol_um3_ml",
GroupingVar1 = "phyto_name",
GroupingVar2 = NA,
GroupingVar3 = NA,
remove.rare = FALSE,
fun = sum,
format = "%d-%m-%y"
)
Arguments
phyto.data |
data.frame |
DateVar |
character string: field name for date variable. character or POSIX data. |
SummaryType |
'abundance' for a matrix of aggregated abundance,'presence.absence' for 1 (present) and 0 (absent). |
AbundanceVar |
character string with field name containing abundance data Can be NA if data is only a species list and aggregated presence/absence is desired. |
GroupingVar1 |
character string: field name for first grouping variable. defaults to spp. |
GroupingVar2 |
character string: name of additional grouping var field |
GroupingVar3 |
character string: name of additional grouping var field |
remove.rare |
TRUE/FALSE. If TRUE, removes all instances of GroupingVar1 that occur < 5 of time periods. |
fun |
function used to aggregate abundance based on grouping variables |
format |
character string: format for DateVar POSIXct conversion |
Value
a data.frame with grouping vars, date_dd_mm_yy, and abundance or presence/absence
Examples
data(lakegeneva)
lakegeneva<-genus_species_extract(lakegeneva,'phyto_name')
lg.genera=phyto_ts_aggregate(lakegeneva,SummaryType='presence.absence',
GroupingVar1='genus')
head(lg.genera)