momentsALD {ald} | R Documentation |
Moments for the Asymmetric Laplace Distribution
Description
Mean, variance, skewness, kurtosis, central moments w.r.t mu
and first absolute central moment for the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu
, scale parameter sigma
and skewness parameter p
.
Usage
meanALD(mu=0,sigma=1,p=0.5)
varALD(mu=0,sigma=1,p=0.5)
skewALD(mu=0,sigma=1,p=0.5)
kurtALD(mu=0,sigma=1,p=0.5)
momentALD(k=1,mu=0,sigma=1,p=0.5)
absALD(sigma=1,p=0.5)
Arguments
k |
moment number. |
mu |
location parameter |
sigma |
scale parameter |
p |
skewness parameter |
Details
If mu
, sigma
or p
are not specified they assume the default values of 0, 1 and 0.5, respectively, belonging to the Symmetric Standard Laplace Distribution denoted by ALD(0,1,0.5)
.
As discussed in Koenker and Machado (1999) and Yu and Moyeed (2001) we say that a random variable
Y is distributed as an ALD with location parameter \mu
, scale parameter \sigma>0
and skewness parameter p
in (0,1), if its probability density function (pdf) is given by
f(y|\mu,\sigma,p)=\frac{p(1-p)}{\sigma}\exp
{-\rho_{p}(\frac{y-\mu}{\sigma})}
where \rho_p(.)
is the so called check (or loss) function defined by
\rho_p(u)=u(p - I_{u<0})
,
with I_{.}
denoting the usual indicator function. This distribution is denoted by ALD(\mu,\sigma,p)
and it's p
th quantile is equal to \mu
. The scale parameter sigma
must be positive and non zero. The skew parameter p
must be between zero and one (0<p
<1).
Value
meanALD
gives the mean, varALD
gives the variance, skewALD
gives the skewness, kurtALD
gives the kurtosis, momentALD
gives the k
th central moment, i.e., E(y-\mu)^k
and absALD
gives the first absolute central moment denoted by E|y-\mu|
.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@ime.unicamp.br>
References
Koenker, R., Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc. 94(3):1296-1309.
Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447.
Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.
See Also
Examples
## Let's compute some moments for a Symmetric Standard Laplace Distribution.
#Third raw moment
momentALD(k=3,mu=0,sigma=1,p=0.5)
#The well known mean, variance, skewness and kurtosis
meanALD(mu=0,sigma=1,p=0.5)
varALD(mu=0,sigma=1,p=0.5)
skewALD(mu=0,sigma=1,p=0.5)
kurtALD(mu=0,sigma=1,p=0.5)
# and this guy
absALD(sigma=1,p=0.5)