mleALD {ald} | R Documentation |
Maximum Likelihood Estimators (MLE) for the Asymmetric Laplace Distribution
Description
Maximum Likelihood Estimators (MLE) for the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu
, scale parameter sigma
and skewness parameter p
.
Usage
mleALD(y, initial = NA)
Arguments
y |
observation vector. |
initial |
optional vector of initial values c( |
Details
The algorithm computes iteratevely the MLE's via the combination of the MLE expressions for \mu
and \sigma
, and then maximizing with rescpect to p
the Log-likelihood function (likALD
) using the well known optimize
R function. By default the tolerance is 10^-5 for all parameters.
Value
The function returns a list with two objects
iter |
iterations to reach convergence. |
par |
vector of Maximum Likelihood Estimators. |
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@ime.unicamp.br>
References
Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.
See Also
Examples
## Let's try this function
param = c(-323,40,0.9)
y = rALD(10000,mu = param[1],sigma = param[2],p = param[3]) #A random sample
res = mleALD(y)
#Comparing
cbind(param,res$par)
#Let's plot
seqq = seq(min(y),max(y),length.out = 1000)
dens = dALD(y=seqq,mu=res$par[1],sigma=res$par[2],p=res$par[3])
hist(y,breaks=50,freq = FALSE,ylim=c(0,max(dens)))
lines(seqq,dens,type="l",lwd=2,col="red",xlab="x",ylab="f(x)", main="ALD Density function")