likALD {ald} | R Documentation |
Log-Likelihood function for the Asymmetric Laplace Distribution
Description
Log-Likelihood function for the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) useful for quantile regression with location parameter equal to mu
, scale parameter sigma
and skewness parameter p
.
Usage
likALD(y, mu = 0, sigma = 1, p = 0.5, loglik = TRUE)
Arguments
y |
observation vector. |
mu |
location parameter |
sigma |
scale parameter |
p |
skewness parameter |
loglik |
logical; if TRUE (default), the Log-likelihood is return, if not just the Likelihood. |
Details
If mu
, sigma
or p
are not specified they assume the default values of 0, 1 and 0.5, respectively, belonging to the Symmetric Standard Laplace Distribution denoted by ALD(0,1,0.5)
.
As discussed in Koenker and Machado (1999) and Yu and Moyeed (2001) we say that a random variable
Y is distributed as an ALD with location parameter \mu
, scale parameter \sigma>0
and skewness parameter p
in (0,1), if its probability density function (pdf) is given by
f(y|\mu,\sigma,p)=\frac{p(1-p)}{\sigma}\exp
{-\rho_{p}(\frac{y-\mu}{\sigma})}
where \rho_p(.)
is the so called check (or loss) function defined by
\rho_p(u)=u(p - I_{u<0})
,
with I_{.}
denoting the usual indicator function. Then the Log-likelihood function is given by
\sum_{i=1}^{n}log(\frac{p(1-p)}{\sigma}\exp
{-\rho_{p}(\frac{y_i-\mu}{\sigma})})
.
The scale parameter sigma
must be positive and non zero. The skew parameter p
must be between zero and one (0<p
<1).
Value
likeALD
returns the Log-likelihood by default and just the Likelihood if loglik = FALSE
.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@ime.unicamp.br>
References
Koenker, R., Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc. 94(3):1296-1309.
Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447.
Yu, K., & Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.
See Also
Examples
## Let's compute the log-likelihood for a given sample
y = rALD(n=1000)
loglik = likALD(y)
#Changing the true parameters the loglik must decrease
loglik2 = likALD(y,mu=10,sigma=2,p=0.3)
loglik;loglik2
if(loglik>loglik2){print("First parameters are Better")}