effectiveness_crm {airt} | R Documentation |
This function computes the actual and predicted effectiveness of the collection of algorithms for different tolerance values.
effectiveness_crm(model)
## S3 method for class 'effectivenesscrm'
autoplot(object, plottype = 1, ...)
model |
The output of the function cirtmodel. |
object |
For autoplot: The output of the function effectiveness_crm |
plottype |
For autoplot: If plottype = 1, then actual effectiveness is plotted, if plottype = 2, then predicted effectiveness is plotted. If plottype = 3, area under the actual effectiveness curve (AUAEC) is plotted against area under the predicted effectiveness curve (AUPEC). |
... |
Other arguments currently ignored. |
A list with the following components:
effectivenessAUC |
The area under the actual and predicted effectiveness curves. |
actcurves |
The |
#'
prdcurves |
The |
set.seed(1)
x1 <- runif(200)
x2 <- 2*x1 + rnorm(200, mean=0, sd=0.1)
x3 <- 1 - x1 + rnorm(200, mean=0, sd=0.1)
X <- cbind.data.frame(x1, x2, x3)
mod <- cirtmodel(X)
out <- effectiveness_crm(mod)
out
# For the actual effectiveness plot
autoplot(out, plottype = 1)
# For the predicted effectivness plot
autoplot(out, plottype = 2)
# For actual and predicted effectiveness plot
autoplot(out, plottype = 3)