| ErrorCrit_RMSE {airGR} | R Documentation | 
Error criterion based on the RMSE
Description
Function which computes an error criterion based on the root-mean-square error (RMSE).
Usage
ErrorCrit_RMSE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
Arguments
| InputsCrit | [object of class InputsCrit] see  | 
| OutputsModel | [object of class OutputsModel] see  | 
| warnings | (optional) [boolean] boolean indicating if the warning messages are shown, default =  | 
| verbose | (optional) [boolean] boolean indicating if the function is run in verbose mode or not, default =  | 
Details
In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows 
the use of the function for model calibration: the product CritValue \times Multiplier is the criterion to be minimised 
(Multiplier = +1 for RMSE).
Value
[list] list containing the function outputs organised as follows:
| $CritValue | [numeric] value of the criterion | 
| $CritName | [character] name of the criterion | 
| $CritBestValue | [numeric] theoretical best criterion value | 
| $Multiplier | [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) | 
| $Ind_notcomputed | [numeric] indices of the time steps where InputsCrit$BoolCrit = FALSEor no data is available | 
Author(s)
Laurent Coron, Ludovic Oudin, Olivier Delaigue
See Also
ErrorCrit_NSE, ErrorCrit_KGE, ErrorCrit_KGE2
Examples
library(airGR)
## loading catchment data
data(L0123001)
## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, 
                                 Precip = BasinObs$P, PotEvap = BasinObs$E)
## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"), 
               which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1999-12-31"))
## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J,
                               InputsModel = InputsModel, IndPeriod_Run = Ind_Run)
## simulation
Param <- c(X1 = 734.568, X2 = -0.840, X3 = 109.809, X4 = 1.971)
OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions, 
                         Param = Param, FUN = RunModel_GR4J)
## efficiency criterion: root-mean-square error
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel, 
                               RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: root-mean-square error on log-transformed flows
transfo <- "log"
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel, 
                               RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
                               transfo = transfo)
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 %)
BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE)
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel, 
                               RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
                               BoolCrit = BoolCrit)
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)